怎么夸一个网站做的好看,网站备案号 放网站,如何建设一个小型网站,网站开发需求方案我们先来说一下我们为什么需要锁#xff1f;
因为在并发情况为了保证线程的安全性#xff0c;是在一个多线程环境下正确性的概念#xff0c;也就是保证多线程环境下共享的、可修改的状态的正确性#xff08;这里的状态指的是程序里的数据#xff09;#xff0c;在java程…我们先来说一下我们为什么需要锁
因为在并发情况为了保证线程的安全性是在一个多线程环境下正确性的概念也就是保证多线程环境下共享的、可修改的状态的正确性这里的状态指的是程序里的数据在java程序中我们可以使用synchronized关键字来对程序进行加锁。
当声明synchronized代码块的时候编译成的字节码将包含monitorenter指令 和 monitorexit指令。这两种指令均会消耗操作数栈上的一个引用类型的元素也就是 synchronized 关键字括号里的引用作为所要加锁解锁的锁对象。
注意jdk 1.6以前synchronized 关键字只表示重量级锁1.6之后区分为偏向锁、轻量级锁、重量级锁。 所谓锁的升级、降级就是 JVM 优化 synchronized 运行的机制当 JVM 检测到不同的竞争状况时会自动切换到适合的锁实现这种切换就是锁的升级、降级 当没有竞争出现时默认会使用偏向锁。JVM 会利用 CAS 操作compare and swap在对象头上的 Mark Word 部分设置线程 ID以表示这个对象偏向于当前线程所以并不涉及真正的互斥锁。这样做的假设是基于在很多应用场景中大部分对象生命周期中最多会被一个线程锁定使用偏向锁可以降低无竞争开销。 如果有另外的线程试图锁定某个已经被偏向过的对象JVM 就需要撤销revoke偏向锁并切换到轻量级锁实现。轻量级锁依赖 CAS 操作 Mark Word 来试图获取锁如果重试成功就使用轻量级锁否则进一步升级为重量级锁 那么我们来看段synchronized代码分析
java代码 1 2 3 4 5 6 7 8 9 10 11 12 13 public class TestDemo { } public class DemoExample1 { static TestDemo testDemo; public static void main(String[] args) throws Exception { testDemo new TestDemo(); synchronized (testDemo){ System.out.println(lock ing); testDemo.hashCode(); System.out.println(ClassLayout.parseInstance(testDemo).toPrintable()); } } } 运行并分析TestDemo.class文件命令 1 javap -c DemoExample1.class 分析结果
Compiled from DemoExample1.java
public class com.boke.DemoExample1 { static com.boke.TestDemo testDemo; public com.boke.DemoExample1(); Code: 0: aload_0 1: invokespecial #1 // Method java/lang/Object.init:()V 4: return public static void main(java.lang.String[]) throws java.lang.Exception; Code: 0: new #2 // class com/boke/TestDemo 3: dup 4: invokespecial #3 // Method com/boke/TestDemo.init:()V 7: putstatic #4 // Field testDemo:Lcom/boke/TestDemo; 10: getstatic #4 // Field testDemo:Lcom/boke/TestDemo; 13: dup 14: astore_1 15: monitorenter 16: getstatic #5 // Field java/lang/System.out:Ljava/io/PrintStream; 19: ldc #6 // String lock ing 21: invokevirtual #7 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 24: getstatic #4 // Field testDemo:Lcom/boke/TestDemo; 27: invokevirtual #8 // Method java/lang/Object.hashCode:()I 30: pop 31: getstatic #5 // Field java/lang/System.out:Ljava/io/PrintStream; 34: getstatic #4 // Field testDemo:Lcom/boke/TestDemo; 37: invokestatic #9 // Method org/openjdk/jol/info/ClassLayout.parseInstance:(Ljava/lang/Object;)Lorg/openjdk/jol/info/ClassLayout; 40: invokevirtual #10 // Method org/openjdk/jol/info/ClassLayout.toPrintable:()Ljava/lang/String; 43: invokevirtual #7 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 46: aload_1 47: monitorexit 48: goto 56 51: astore_2 52: aload_1 53: monitorexit 54: aload_2 55: athrow 56: return Exception table: from to target type 16 48 51 any 51 54 51 any
}
通过字节码可以看出包含一个monitorenter指令以及多个monitorexit指令。这是因为jvm需要确保所获得的锁在正常执行路径以及异常执行路径上都能够被解锁。 我们可以抽象的理解为每个锁对象拥有一个锁计数器和一个指向持有该锁的线程的指针
当执行 monitorenter 时如果目标锁对象的计数器为 0那么说明它没有被其他线程所持有。在这个情况下Java 虚拟机会将该锁对象的持有线程设置为当前线程并且将其计数器加 1。
在目标锁对象的计数器不为 0 的情况下如果锁对象的持有线程是当前线程那么 Java 虚拟机可以将其计数器加 1否则需要等待直至持有线程释放该锁。当执行 monitorexit 时Java 虚拟机则需将锁对象的计数器减 1。当计数器减为 0 时那便代表该锁已经被释放掉了。
之所以采用这种计数器的方式是为了允许同一个线程重复获取同一把锁。举个例子如果一个 Java 类中拥有多个 synchronized 方法那么这些方法之间的相互调用不管是直接的还是间接的都会涉及对同一把锁的重复加锁操作。因此我们需要设计这么一个可重入的特性来避免编程里的隐式约束。我们来看一个案例在不加锁的情况多下通过取两次数值然后进行对比来模拟两次共享状态的操作:
java代码 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 public class DemoExample3 { public int sharedState; public void nonSafeAction() { while (sharedState 100000) { int former sharedState; int latter sharedState; if (former ! latter - 1) { System.out.println(Observed data race, former is former , latter is latter); } } } public static void main(String[] args) throws InterruptedException { final DemoExample3 demoExample3 new DemoExample3(); Thread thread1 new Thread() { Override public void run() { demoExample3.nonSafeAction(); } }; Thread thread2 new Thread() { Override public void run() { demoExample3.nonSafeAction(); } }; thread1.start(); thread2.start(); thread1.join(); thread2.join(); } } 在没有加 synchronized 关键字的时候打印出来的结果截取部分
Observed data race, former is 55179, latter is 55181
Observed data race, former is 56752, latter is 56754
Observed data race, former is 58304, latter is 58306
Observed data race, former is 60340, latter is 60342
Observed data race, former is 61627, latter is 61629
Observed data race, former is 63107, latter is 62946
Observed data race, former is 64029, latter is 64029
Observed data race, former is 65579, latter is 65581
Observed data race, former is 67315, latter is 67317
Observed data race, former is 68542, latter is 68542
Observed data race, former is 70687, latter is 70687
Observed data race, former is 72654, latter is 72656
Observed data race, former is 74644, latter is 74646
就会发现打印出好多与if (former ! latter - 1) 条件相符的值这是错误的正确的结果应该是一条也没有 我们在来看一下加上synchronized关键字的代码
java代码 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 public class DemoExample3 { public int sharedState; public void nonSafeAction() { while (sharedState 100000) { synchronized (this) { int former sharedState; int latter sharedState; if (former ! latter - 1) { System.out.println(Observed data race, former is former , latter is latter); } } } } public static void main(String[] args) throws InterruptedException { final DemoExample3 demoExample3 new DemoExample3(); Thread thread1 new Thread() { Override public void run() { demoExample3.nonSafeAction(); } }; Thread thread2 new Thread() { Override public void run() { demoExample3.nonSafeAction(); } }; thread1.start(); thread2.start(); thread1.join(); thread2.join(); } } 这次看下加上synchronized关键字的打印出来的结果
Process finished with exit code 0 说明将两次赋值过程用synchronized保护起来使用this作为互斥单元就可以避免别的线程并发的去修改 sharedState这也就是我刚开说的并发情况下为了保证线程的安全性我们可以通过加锁来保证。 说完我们为什么需要锁接下来我们介绍偏向锁、轻量级锁、重量级锁及锁的膨胀过程 首先我们先从jvm源码中来分析锁的膨胀过程锁升级的过程
在jvm中synchronized的是行为是jvm runntime的一部分所以我们需要先找到 Runtime 相关的功能实现。通过在代码中查询类似“monitor_enter”或“Monitor Enter”很直观的就可以定位到
sharedRuntime.cpphttp://hg.openjdk.java.net/jdk/jdk/file/6659a8f57d78/src/hotspot/share/runtime/sharedRuntime.cpp它是解释器和编译器运行时的基类 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 // Handles the uncommon case in locking, i.e., contention or an inflated lock. JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread)) // Disable ObjectSynchronizer::quick_enter() in default config // on AARCH64 and ARM until JDK-8153107 is resolved. if (ARM_ONLY((SyncFlags 256) ! 0 ) AARCH64_ONLY((SyncFlags 256) ! 0 ) !SafepointSynchronize::is_synchronizing()) { // Only try quick_enter() if were not trying to reach a safepoint // so that the calling thread reaches the safepoint more quickly. if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return; } // NO_ASYNC required because an async exception on the state transition destructor // would leave you with the lock held and it would never be released. // The normal monitorenter NullPointerException is thrown without acquiring a lock // and the model is that an exception implies the method failed. JRT_BLOCK_NO_ASYNC oop obj(_obj); if (PrintBiasedLockingStatistics) { Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); } Handle h_obj(THREAD, obj); //在 JVM 启动时我们可以指定是否开启偏向锁 if (UseBiasedLocking) { // Retry fast entry if bias is revoked to avoid unnecessary inflation strong //fast_enter 是我们熟悉的完整锁获取路径/strong ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK); } else { //slow_enter 则是绕过偏向锁直接进入轻量级锁获取逻辑 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK); } assert(!HAS_PENDING_EXCEPTION, Should have no exception here); JRT_BLOCK_END JRT_END synchronizer.cpphttps://hg.openjdk.java.net/jdk/jdk/file/896e80158d35/src/hotspot/share/runtime/synchronizer.cppJVM 同步相关的各种基础不仅仅是 synchronized 的逻辑包括从本地代码也就是 JNI触发的 Monitor 动作全都可以在里面找到例如jni_enter/jni_exit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 // ----------------------------------------------------------------------------- // Fast Monitor Enter/Exit // This the fast monitor enter. The interpreter and compiler use // some assembly copies of this code. Make sure update those code // if the following function is changed. The implementation is // extremely sensitive to race condition. Be careful. void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) { if (UseBiasedLocking) { if (!SafepointSynchronize::is_at_safepoint()) { //biasedLocking定义了偏向锁相关操作revoke_and_rebias revokeatsafepoint 则定义了当检测到安全点时的处理 BiasedLocking::Condition cond BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD); if (cond BiasedLocking::BIAS_REVOKED_AND_REBIASED) { return; } } else { assert(!attempt_rebias, can not rebias toward VM thread); BiasedLocking::revoke_at_safepoint(obj); } assert(!obj-mark()-has_bias_pattern(), biases should be revoked by now); } //如果获取偏向锁失败则进入 slow_enter锁升级 slow_enter(obj, lock, THREAD); } // ----------------------------------------------------------------------------- // Interpreter/Compiler Slow Case // This routine is used to handle interpreter/compiler slow case // We dont need to use fast path here, because it must have been // failed in the interpreter/compiler code. void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) { markOop mark obj-mark(); assert(!mark-has_bias_pattern(), should not see bias pattern here); if (mark-is_neutral()) { // Anticipate successful CAS -- the ST of the displaced mark must // be visible the ST performed by the CAS. // 将目前的 Mark Word 复制到 Displaced Header 上 lock-set_displaced_header(mark); // 利用 CAS 设置对象的 Mark Wo if (mark obj()-cas_set_mark((markOop) lock, mark)) { return; } // Fall through to inflate() … // 检查存在竞争 } else if (mark-has_locker() THREAD-is_lock_owned((address)mark-locker())) { assert(lock ! mark-locker(), must not re-lock the same lock); assert(lock ! (BasicLock*)obj-mark(), dont relock with same BasicLock”); // 清除 lock-set_displaced_header(NULL); return; } // The object header will never be displaced to this lock, // so it does not matter what the value is, except that it // must be non-zero to avoid looking like a re-entrant lock, // and must not look locked either. // 重置 Displaced Header lock-set_displaced_header(markOopDesc::unused_mark()); //锁膨胀 ObjectSynchronizer::inflate(THREAD, obj(), inflate_cause_monitor_enter)-enter(THREAD); } // This routine is used to handle interpreter/compiler slow case // We dont need to use fast path here, because it must have // failed in the interpreter/compiler code. Simply use the heavy // weight monitor should be ok, unless someone find otherwise. void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) { fast_exit(object, lock, THREAD); } //锁膨胀 ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) { // Inflate mutates the heap ... // Relaxing assertion for bug 6320749. assert (Universe::verify_in_progress() || !SafepointSynchronize::is_at_safepoint(), invariant) ; for (;;) {//自旋 const markOop mark object-mark() ; assert (!mark-has_bias_pattern(), invariant) ; // The mark can be in one of the following states: // * Inflated - just return // * Stack-locked - coerce it to inflated // * INFLATING - busy wait for conversion to complete // * Neutral - aggressively inflate the object. // * BIASED - Illegal. We should never see this // CASE: inflated已膨胀即重量级锁 if (mark-has_monitor()) {//判断当前是否为重量级锁 ObjectMonitor * inf mark-monitor() ;//获取指向ObjectMonitor的指针 assert (inf-header()-is_neutral(), invariant); assert (inf-object() object, invariant) ; assert (ObjectSynchronizer::verify_objmon_isinpool(inf), monitor is invalid); return inf ; } // CASE: inflation in progress - inflating over a stack-lock.膨胀等待其他线程正在从轻量级锁转为膨胀锁 // Some other thread is converting from stack-locked to inflated. // Only that thread can complete inflation -- other threads must wait. // The INFLATING value is transient. // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish. // We could always eliminate polling by parking the thread on some auxiliary list. if (mark markOopDesc::INFLATING()) { TEVENT (Inflate: spin while INFLATING) ; ReadStableMark(object) ; continue ; } // CASE: stack-locked栈锁轻量级锁 // Could be stack-locked either by this thread or by some other thread. // // Note that we allocate the objectmonitor speculatively, _before_ attempting // to install INFLATING into the mark word. We originally installed INFLATING, // allocated the objectmonitor, and then finally STed the address of the // objectmonitor into the mark. This was correct, but artificially lengthened // the interval in which INFLATED appeared in the mark, thus increasing // the odds of inflation contention. // // We now use per-thread private objectmonitor free lists. // These list are reprovisioned from the global free list outside the // critical INFLATING...ST interval. A thread can transfer // multiple objectmonitors en-mass from the global free list to its local free list. // This reduces coherency traffic and lock contention on the global free list. // Using such local free lists, it doesnt matter if the omAlloc() call appears // before or after the CAS(INFLATING) operation. // See the comments in omAlloc(). if (mark-has_locker()) { ObjectMonitor * m omAlloc (Self) ;//获取一个可用的ObjectMonitor // Optimistically prepare the objectmonitor - anticipate successful CAS // We do this before the CAS in order to minimize the length of time // in which INFLATING appears in the mark. m-Recycle(); m-_Responsible NULL ; m-OwnerIsThread 0 ; m-_recursions 0 ; m-_SpinDuration ObjectMonitor::Knob_SpinLimit ; // Consider: maintain by type/class markOop cmp (markOop) Atomic::cmpxchg_ptr (markOopDesc::INFLATING(), object-mark_addr(), mark) ; if (cmp ! mark) {//CAS失败//CAS失败说明冲突了自旋等待//CAS失败说明冲突了自旋等待//CAS失败说明冲突了自旋等待 omRelease (Self, m, true) ;//释放监视器锁 continue ; // Interference -- just retry } // Weve successfully installed INFLATING (0) into the mark-word. // This is the only case where 0 will appear in a mark-work. // Only the singular thread that successfully swings the mark-word // to 0 can perform (or more precisely, complete) inflation. // // Why do we CAS a 0 into the mark-word instead of just CASing the // mark-word from the stack-locked value directly to the new inflated state? // Consider what happens when a thread unlocks a stack-locked object. // It attempts to use CAS to swing the displaced header value from the // on-stack basiclock back into the object header. Recall also that the // header value (hashcode, etc) can reside in (a) the object header, or // (b) a displaced header associated with the stack-lock, or (c) a displaced // header in an objectMonitor. The inflate() routine must copy the header // value from the basiclock on the owners stack to the objectMonitor, all // the while preserving the hashCode stability invariants. If the owner // decides to release the lock while the value is 0, the unlock will fail // and control will eventually pass from slow_exit() to inflate. The owner // will then spin, waiting for the 0 value to disappear. Put another way, // the 0 causes the owner to stall if the owner happens to try to // drop the lock (restoring the header from the basiclock to the object) // while inflation is in-progress. This protocol avoids races that might // would otherwise permit hashCode values to change or flicker for an object. // Critically, while object-mark is 0 mark-displaced_mark_helper() is stable. // 0 serves as a BUSY inflate-in-progress indicator // fetch the displaced mark from the owners stack. // The owner cant die or unwind past the lock while our INFLATING // object is in the mark. Furthermore the owner cant complete // an unlock on the object, either. markOop dmw mark-displaced_mark_helper() ; assert (dmw-is_neutral(), invariant) ; //CAS成功设置ObjectMonitor的_header、_owner和_object等 // Setup monitor fields to proper values -- prepare the monitor m-set_header(dmw) ; // Optimization: if the mark-locker stack address is associated // with this thread we could simply set m-_owner Self and // m-OwnerIsThread 1. Note that a thread can inflate an object // that it has stack-locked -- as might happen in wait() -- directly // with CAS. That is, we can avoid the xchg-NULL .... ST idiom. m-set_owner(mark-locker()); m-set_object(object); // TODO-FIXME: assert BasicLock-dhw ! 0. // Must preserve store ordering. The monitor state must // be stable at the time of publishing the monitor address. guarantee (object-mark() markOopDesc::INFLATING(), invariant) ; object-release_set_mark(markOopDesc::encode(m)); // Hopefully the performance counters are allocated on distinct cache lines // to avoid false sharing on MP systems ... if (ObjectMonitor::_sync_Inflations ! NULL) ObjectMonitor::_sync_Inflations-inc() ; TEVENT(Inflate: overwrite stacklock) ; if (TraceMonitorInflation) { if (object-is_instance()) { ResourceMark rm; tty-print_cr(Inflating object INTPTR_FORMAT , mark INTPTR_FORMAT , type %s, (void *) object, (intptr_t) object-mark(), object-klass()-external_name()); } } return m ; } // CASE: neutral 无锁 // TODO-FIXME: for entry we currently inflate and then try to CAS _owner. // If we know were inflating for entry its better to inflate by swinging a // pre-locked objectMonitor pointer into the object header. A successful // CAS inflates the object *and* confers ownership to the inflating thread. // In the current implementation we use a 2-step mechanism where we CAS() // to inflate and then CAS() again to try to swing _owner from NULL to Self. // An inflateTry() method that we could call from fast_enter() and slow_enter() // would be useful. assert (mark-is_neutral(), invariant); ObjectMonitor * m omAlloc (Self) ; // prepare m for installation - set monitor to initial state m-Recycle(); m-set_header(mark); m-set_owner(NULL); m-set_object(object); m-OwnerIsThread 1 ; m-_recursions 0 ; m-_Responsible NULL ; m-_SpinDuration ObjectMonitor::Knob_SpinLimit ; // consider: keep metastats by type/class if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object-mark_addr(), mark) ! mark) { m-set_object (NULL) ; m-set_owner (NULL) ; m-OwnerIsThread 0 ; m-Recycle() ; omRelease (Self, m, true) ; m NULL ; continue ; // interference - the markword changed - just retry. // The state-transitions are one-way, so theres no chance of // live-lock -- Inflated is an absorbing state. } // Hopefully the performance counters are allocated on distinct // cache lines to avoid false sharing on MP systems ... if (ObjectMonitor::_sync_Inflations ! NULL) ObjectMonitor::_sync_Inflations-inc() ; TEVENT(Inflate: overwrite neutral) ; if (TraceMonitorInflation) { if (object-is_instance()) { ResourceMark rm; tty-print_cr(Inflating object INTPTR_FORMAT , mark INTPTR_FORMAT , type %s, (void *) object, (intptr_t) object-mark(), object-klass()-external_name()); } } return m ; } } 膨胀过程的实现比较复杂大概实现过程如下
1、整个膨胀过程在自旋下完成
2、mark-has_monitor()方法判断当前是否为重量级锁即Mark Word的锁标识位为 10如果当前状态为重量级锁执行步骤3否则执行步骤4
3、mark-monitor()方法获取指向ObjectMonitor的指针并返回说明膨胀过程已经完成
4、如果当前锁处于膨胀中说明该锁正在被其它线程执行膨胀操作则当前线程就进行自旋等待锁膨胀完成这里需要注意一点虽然是自旋操作但不会一直占用cpu资源每隔一段时间会通过os::NakedYield方法放弃cpu资源或通过park方法挂起如果其他线程完成锁的膨胀操作则退出自旋并返回
5、如果当前是轻量级锁状态即锁标识位为 00膨胀过程如下 通过omAlloc方法获取一个可用的ObjectMonitor monitor并重置monitor数据 通过CAS尝试将Mark Word设置为markOopDesc:INFLATING标识当前锁正在膨胀中如果CAS失败说明同一时刻其它线程已经将Mark Word设置为markOopDesc:INFLATING当前线程进行自旋等待膨胀完成 如果CAS成功设置monitor的各个字段_header、_owner和_object等并返回
6、如果是无锁重置监视器值 以上就是从jvm源码来分析锁的膨胀过程了。 接下来我们案例入手开始分析偏向锁批量重偏向、批量撤销、轻量级锁、重量级锁及膨胀过程 偏向锁 偏向锁是指一段同步代码一直被一个线程所访问那么该线程会自动获取锁降低获取锁的代价。 在大多数情况下锁总是由同一线程多次获得不存在多线程竞争所以出现了偏向锁。其目标就是在只有一个线程执行同步代码块时能够提高性能。 当一个线程访问同步代码块并获取锁时会在Mark Word里存储锁偏向的线程ID。在线程进入和退出同步块时不再通过CAS操作来加锁和解锁而是检测Mark Word里是否存储着指向当前线程的偏向锁。引入偏向锁是为了在无多线程竞争的情况下尽量减少不必要的轻量级锁执行路径因为轻量级锁的获取及释放依赖多次CAS原子指令而偏向锁只需要在置换ThreadID的时候依赖一次CAS原子指令即可。 偏向锁只有遇到其他线程尝试竞争偏向锁时持有偏向锁的线程才会释放锁线程不会主动释放偏向锁。偏向锁的撤销需要等待全局安全点在这个时间点上没有字节码正在执行它会首先暂停拥有偏向锁的线程判断锁对象是否处于被锁定状态。撤销偏向锁后恢复到无锁标志位为“01”或轻量级锁标志位为“00”的状态。 偏向锁在JDK 6及以后的JVM里是默认启用的。可以通过JVM参数关闭偏向锁-XX:-UseBiasedLockingfalse关闭之后程序默认会进入轻量级锁状态。 在上篇【java并发笔记三之synchronized 偏向锁 轻量级锁 重量级锁证明】说过偏向锁在没有禁止延迟的时候还没加锁之前就已经是偏向锁了但是加锁完之后退出同步代码块 还是偏向锁计算过hashcode之后就不能被偏向。
一、我们来看段代码证明下在没有计算hashcode的情况下 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 //创建一个啥都没有的类 public class TestDemo {} public class DemoExample { static TestDemo testDemo; public static void main(String[] args) throws Exception { //此处睡眠50000ms取消jvm默认偏向锁延迟4000ms Thread.sleep(5000); testDemo new TestDemo(); //hash计算 //testDemo.hashCode(); System.out.println(befor lock); //无锁偏向锁 System.out.println(ClassLayout.parseInstance(testDemo).toPrintable()); synchronized (testDemo){ System.out.println(lock ing); System.out.println(ClassLayout.parseInstance(testDemo).toPrintable()); } System.out.println(after lock); System.out.println(ClassLayout.parseInstance(testDemo).toPrintable()); } } 运行结果
befor lock
OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 05 00 00 00 (00000101 00000000 00000000 00000000) (5) 4 4 (object header) 00 00 00 00 (00000000 00000000 00000000 00000000) (0) 8 4 (object header) 43 c1 00 f8 (01000011 11000001 00000000 11111000) (-134168253) 12 4 (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal 4 bytes external 4 bytes total lock ing
com.boke.TestDemo object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 05 80 80 ac (00000101 10000000 10000000 10101100) (-1400864763) 4 4 (object header) 8d 7f 00 00 (10001101 01111111 00000000 00000000) (32653) 8 4 (object header) 43 c1 00 f8 (01000011 11000001 00000000 11111000) (-134168253) 12 4 (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal 4 bytes external 4 bytes total after lock
com.boke.TestDemo object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 05 80 80 ac (00000101 10000000 10000000 10101100) (-1400864763) 4 4 (object header) 8d 7f 00 00 (10001101 01111111 00000000 00000000) (32653) 8 4 (object header) 43 c1 00 f8 (01000011 11000001 00000000 11111000) (-134168253) 12 4 (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal 4 bytes external 4 bytes total 分析结果
befor lock绿颜色表示虽然是偏向锁但是黄颜色表示没有任何线程持有锁一个对象被初始化的时候是可偏向的
lock ing 绿颜色表示偏向锁黄颜色的表示当前线程拿到锁
after lock绿颜色表示偏向锁黄颜色的表示当前线程拿到锁还是偏向的状态偏向锁退出锁后依然是偏向状态 jvm在初始化一个对象的时候如果没有启用偏向锁延迟就会去判断这个对象是否可以被偏向如果可以就是偏向锁退出同步代码块 还是偏向锁。 二、在对象进行hashcode计算之后就会输出下面的结果也就是代码的这块testDemo.hashCode()去掉注释进行hashcode运算
befor lock
com.boke.TestDemo object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 05 00 00 00 (00000101 00000000 00000000 00000000) (5) 4 4 (object header) 00 00 00 00 (00000000 00000000 00000000 00000000) (0) 8 4 (object header) 43 c1 00 f8 (01000011 11000001 00000000 11111000) (-134168253) 12 4 (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal 4 bytes external 4 bytes total lock ing
com.boke.TestDemo object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) f8 28 4b 0c (11111000 00101000 01001011 00001100) (206252280) 4 4 (object header) 00 70 00 00 (00000000 01110000 00000000 00000000) (28672) 8 4 (object header) 43 c1 00 f8 (01000011 11000001 00000000 11111000) (-134168253) 12 4 (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal 4 bytes external 4 bytes total after lock
com.boke.TestDemo object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 05 80 80 ac (00000101 10000000 10000000 10101100) (-1400864763) 4 4 (object header) 8d 7f 00 00 (10001101 01111111 00000000 00000000) (32653) 8 4 (object header) 43 c1 00 f8 (01000011 11000001 00000000 11111000) (-134168253) 12 4 (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal 4 bytes external 4 bytes total 结果显示并不是偏向锁了说明对象在计算过hashcode之后就不能被偏向 具体来说在线程进行加锁时如果该锁对象支持偏向锁那么 Java 虚拟机会通过 CAS操作将当前线程的地址记录在锁对象的标记字段之中并且将标记字段的最后三位设置为1 01 在接下来的运行过程中每当有线程请求这把锁Java 虚拟机只需判断锁对象标记字段中最后三位是否为 1 01是否包含当前线程的地址以及 epoch 值是否和锁对象的类的epoch 值相同。如果都满足那么当前线程持有该偏向锁可以直接返回 这里的 epoch 值是一个什么概念呢 我们先从偏向锁的撤销讲起。当请求加锁的线程和锁对象标记字段保持的线程地址不匹配时而且 epoch 值相等如若不等那么当前线程可以将该锁重偏向至自己Java 虚拟机需要撤销该偏向锁。这个撤销过程非常麻烦它要求持有偏向锁的线程到达安全点再将偏向锁替换成轻量级锁 如果某一类锁对象的总撤销数超过了一个阈值对应 jvm参数 -XX:BiasedLockingBulkRebiasThreshold默认为 20那么 Java 虚拟机会宣布这个类的偏向锁失效这里说的就是批量重偏向 JVM源码 1 2 3 4 5 product(intx, BiasedLockingBulkRebiasThreshold, 20, \ Threshold of number of revocations per type to try to \ rebias all objects in the heap of that type) \ range(0, max_intx) \ constraint(BiasedLockingBulkRebiasThresholdFunc,AfterErgo) \ 具体的做法便是在每个类中维护一个 epoch 值你可以理解为第几代偏向锁。当设置偏向锁时Java 虚拟机需要将该 epoch 值复制到锁对象的标记字段中 在宣布某个类的偏向锁失效时Java 虚拟机实则将该类的 epoch 值加 1表示之前那一代的偏向锁已经失效。而新设置的偏向锁则需要复制新的 epoch 值 为了保证当前持有偏向锁并且已加锁的线程不至于因此丢锁Java 虚拟机需要遍历所有线程的 Java 栈找出该类已加锁的实例并且将它们标记字段中的 epoch 值加 1。该操作需要所有线程处于安全点状态 如果总撤销数超过另一个阈值对应 jvm 参数 -XX:BiasedLockingBulkRevokeThreshold默认值为 40那么 Java 虚拟机会认为这个类已经不再适合偏向锁。此时Java 虚拟机会撤销该类实例的偏向锁并且在之后的加锁过程中直接为该类实例设置轻量级锁(这里说的就是偏向批量撤销) JVM源码 1 2 3 4 5 product(intx, BiasedLockingBulkRevokeThreshold, 40, \ Threshold of number of revocations per type to permanently \ revoke biases of all objects in the heap of that type) \ range(0, max_intx) \ constraint(BiasedLockingBulkRevokeThresholdFunc,AfterErgo) 接下来我们分析两个批量重偏向相关案例禁止偏向锁延迟的情况下-XX:UseBiasedLocking -XX:BiasedLockingStartupDelay0 案例一
java代码 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 public class TestDemo { } public class DemoExample4 { public static void main(String[] args) throws InterruptedException { test1(); } public class DemoExample5 { public static void main(String[] args) throws InterruptedException { test1(); } /** * 仅证明批量重偏向 * throws InterruptedException */ public static void test1() throws InterruptedException { ListTestDemo list new ArrayList(); for (int i 0; i 100; i) { list.add(new TestDemo()); } Thread t1 new Thread(()-{ System.out.println(加锁前 get(0) 应该是无锁可偏向 ClassLayout.parseInstance(list.get(0)).toPrintable()); for (TestDemo a:list ) { synchronized (a){ System.out.print(加锁 ); } } System.out.println(); System.out.println(加锁后 get(0) 应该是偏向锁ClassLayout.parseInstance(list.get(0)).toPrintable()); try { TimeUnit.SECONDS.sleep(1000);//这里不让线程死防止线程ID复用 } catch (InterruptedException e) { e.printStackTrace(); } }); t1.start(); TimeUnit.SECONDS.sleep(5); Thread t2 new Thread(()-{ for (int i 0; i 40; i) { TestDemo a list.get(i); synchronized (a){ System.out.print(加锁 ); } if (i18){ System.out.println(); System.out.println(加锁后 get(18) 应该是无锁轻量级锁释放 ClassLayout.parseInstance(list.get(i)).toPrintable()); } if (i19){ //开始重偏向 System.out.println(); System.out.println(加锁后 get(19) 应该是偏向锁 ClassLayout.parseInstance(list.get(i)).toPrintable()); System.out.println(加锁后 get(0) 应该是无锁轻量级锁释放 ClassLayout.parseInstance(list.get(0)).toPrintable()); System.out.println(加锁后 get(99) 应该是偏向锁 偏向t1 ClassLayout.parseInstance(list.get(99)).toPrintable()); } if (i20){ System.out.println(); System.out.println(加锁后 get(20) 应该是偏向锁 ClassLayout.parseInstance(list.get(i)).toPrintable()); } } }); t2.start(); } } 运行并分析结果
com.boke.TestDemo object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 05 00 00 00 (00000101 00000000 00000000 00000000) (5) 4 4 (object header) 00 00 00 00 (00000000 00000000 00000000 00000000) (0) 8 4 (object header) 43 c1 00 f8 (01000011 11000001 00000000 11111000) (-134168253) 12 4 (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal 4 bytes external 4 bytes total 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁后 get(0) 应该是偏向锁com.boke.TestDemo object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 05 30 8a 73 (00000101 00110000 10001010 01110011) (1938436101) 4 4 (object header) c4 7f 00 00 (11000100 01111111 00000000 00000000) (32708) 8 4 (object header) 43 c1 00 f8 (01000011 11000001 00000000 11111000) (-134168253) 12 4 (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal 4 bytes external 4 bytes total 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁
加锁后 get(18) 应该是无锁轻量级锁释放 com.boke.TestDemo object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 01 00 00 00 (00000001 00000000 00000000 00000000) (1) 4 4 (object header) 00 00 00 00 (00000000 00000000 00000000 00000000) (0) 8 4 (object header) 43 c1 00 f8 (01000011 11000001 00000000 11111000) (-134168253) 12 4 (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal 4 bytes external 4 bytes total 加锁
加锁后 get(19) 应该是偏向锁 com.boke.TestDemo object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 05 41 0b 75 (00000101 01000001 00001011 01110101) (1963671813) 4 4 (object header) c4 7f 00 00 (11000100 01111111 00000000 00000000) (32708) 8 4 (object header) 43 c1 00 f8 (01000011 11000001 00000000 11111000) (-134168253) 12 4 (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal 4 bytes external 4 bytes total 加锁后 get(0) 应该是无锁轻量级锁释放 com.boke.TestDemo object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 01 00 00 00 (00000001 00000000 00000000 00000000) (1) 4 4 (object header) 00 00 00 00 (00000000 00000000 00000000 00000000) (0) 8 4 (object header) 43 c1 00 f8 (01000011 11000001 00000000 11111000) (-134168253) 12 4 (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal 4 bytes external 4 bytes total 加锁后 get(99) 应该是偏向锁 偏向t1 com.boke.TestDemo object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 05 30 8a 73 (00000101 00110000 10001010 01110011) (1938436101) 4 4 (object header) c4 7f 00 00 (11000100 01111111 00000000 00000000) (32708) 8 4 (object header) 43 c1 00 f8 (01000011 11000001 00000000 11111000) (-134168253) 12 4 (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal 4 bytes external 4 bytes total 加锁
加锁后 get(20) 应该是偏向锁 com.boke.TestDemo object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 05 41 0b 75 (00000101 01000001 00001011 01110101) (1963671813) 4 4 (object header) c4 7f 00 00 (11000100 01111111 00000000 00000000) (32708) 8 4 (object header) 43 c1 00 f8 (01000011 11000001 00000000 11111000) (-134168253) 12 4 (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal 4 bytes external 4 bytes total 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 加锁 案例二
java代码 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 public class TestDemo { } public class DemoExample7 { public static void main(String[] args) throws Exception { ListTestDemo list new ArrayList(); //初始化数据 for (int i 0; i 100; i) { list.add(new TestDemo()); } Thread t1 new Thread() { String name 1; public void run() { System.out.printf(name); for (TestDemo a : list) { synchronized (a) { if (a list.get(10)) { System.out.println(t1 预期是偏向锁 10 ClassLayout.parseInstance(a).toPrintable()); } } } try { Thread.sleep(100000); } catch (InterruptedException e) { e.printStackTrace(); } } }; t1.start(); Thread.sleep(5000); System.out.println(main 预期是偏向锁 10 ClassLayout.parseInstance(list.get(10)).toPrintable()); Thread t2 new Thread() { String name 2; public void run() { System.out.printf(name); for (int i 0; i 100; i) { TestDemo a list.get(i); // hack 为了在批量重偏向发生后再次加锁,前面使用了轻量级锁的对象 if (i 20) { a list.get(9); } synchronized (a) { if (i 10) { //已经经过偏向锁撤销并使用轻量级锁的对象释放后 状态依为001 无锁状态 System.out.println(t2 i10 get(1)预期是无锁 ClassLayout.parseInstance(list.get(1)).toPrintable()); //因为和t1交替使用对象a 没有发生竞争但偏向锁已偏向另外不满足重偏向条件所以使用轻量级锁 System.out.println(t2 i10 get(i) 预期轻量级锁 i ClassLayout.parseInstance(a).toPrintable()); } if (i 19) { //已经经过偏向锁撤销并使用轻量级锁的对象在批量重偏向发生后。不会影响现有的状态 状态依然为001 System.out.println(t2 i19 get(10)预期是无锁 10 ClassLayout.parseInstance(list.get(10)).toPrintable()); //满足重偏向条件后已偏向的对象可以重新使用偏向锁 将线程id指向当前线程101 System.out.println(t2 i19 get(i) 满足重偏向条件20 预期偏向锁 i ClassLayout.parseInstance(a).toPrintable()); //满足重偏向条件后已偏向还为需要加锁的对象依然偏向线程1 因为偏向锁的撤销是发生在下次加锁的时候。这里没有执行到同步此对象所以依然偏向t1 System.out.println(t2 i19 get(i) 满足重偏向条件20 但后面的对象没有被加锁所以依旧偏向t1 i ClassLayout.parseInstance(list.get(40)).toPrintable()); } if (i 20) { //满足重偏向条件后再次加锁之前使用了轻量级锁的对象依然轻量级锁证明重偏向这个状态只针对偏向锁。已经发生锁升级的不会退回到偏向锁 System.out.println(t2 i20 满足偏向条件之后之前被设置为无锁状态的对象不可偏向这里使用的是轻量级锁 get(9)预期是轻量级锁 ClassLayout.parseInstance(a).toPrintable()); } } } try { Thread.sleep(100000); } catch (InterruptedException e) { e.printStackTrace(); } } }; t2.start(); Thread.sleep(5000); } } 运行并分析结果
t1 预期是偏向锁10 com.boke.TestDemo object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 05 78 86 af (00000101 01111000 10000110 10101111) (-1350141947) 4 4 (object header) f6 7f 00 00 (11110110 01111111 00000000 00000000) (32758) 8 4 (object header) 05 d6 00 f8 (00000101 11010110 00000000 11111000) (-134162939) 12 4 (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal 4 bytes external 4 bytes total main 预期是偏向锁 10 com.boke.TestDemo object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 05 78 86 af (00000101 01111000 10000110 10101111) (-1350141947) 4 4 (object header) f6 7f 00 00 (11110110 01111111 00000000 00000000) (32758) 8 4 (object header) 05 d6 00 f8 (00000101 11010110 00000000 11111000) (-134162939) 12 4 (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal 4 bytes external 4 bytes total 2t2 i10 get(1)预期是无锁 com.boke.TestDemo object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 01 00 00 00 (00000001 00000000 00000000 00000000) (1) 4 4 (object header) 00 00 00 00 (00000000 00000000 00000000 00000000) (0) 8 4 (object header) 05 d6 00 f8 (00000101 11010110 00000000 11111000) (-134162939) 12 4 (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal 4 bytes external 4 bytes total t2 i10 get(i) 预期轻量级锁 10 com.boke.TestDemo object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 08 69 42 08 (00001000 01101001 01000010 00001000) (138569992) 4 4 (object header) 00 70 00 00 (00000000 01110000 00000000 00000000) (28672) 8 4 (object header) 05 d6 00 f8 (00000101 11010110 00000000 11111000) (-134162939) 12 4 (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal 4 bytes external 4 bytes total t2 i19 get(10)预期是无锁10com.boke.TestDemo object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 01 00 00 00 (00000001 00000000 00000000 00000000) (1) 4 4 (object header) 00 00 00 00 (00000000 00000000 00000000 00000000) (0) 8 4 (object header) 05 d6 00 f8 (00000101 11010110 00000000 11111000) (-134162939) 12 4 (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal 4 bytes external 4 bytes total t2 i19 get(i) 满足重偏向条件20 预期偏向锁 19com.boke.TestDemo object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 05 71 95 ae (00000101 01110001 10010101 10101110) (-1365937915) 4 4 (object header) f6 7f 00 00 (11110110 01111111 00000000 00000000) (32758) 8 4 (object header) 05 d6 00 f8 (00000101 11010110 00000000 11111000) (-134162939) 12 4 (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal 4 bytes external 4 bytes total t2 i19 get(i) 满足重偏向条件20 但后面的对象没有被加锁所以依旧偏向t1 19com.boke.TestDemo object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 05 78 86 af (00000101 01111000 10000110 10101111) (-1350141947) 4 4 (object header) f6 7f 00 00 (11110110 01111111 00000000 00000000) (32758) 8 4 (object header) 05 d6 00 f8 (00000101 11010110 00000000 11111000) (-134162939) 12 4 (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal 4 bytes external 4 bytes total t2 i20 满足偏向条件之后之前被设置为无锁状态的对象不可偏向这里使用的是轻量级锁 get(9)预期是轻量级锁 com.boke.TestDemo object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 08 69 42 08 (00001000 01101001 01000010 00001000) (138569992) 4 4 (object header) 00 70 00 00 (00000000 01110000 00000000 00000000) (28672) 8 4 (object header) 05 d6 00 f8 (00000101 11010110 00000000 11111000) (-134162939) 12 4 (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal 4 bytes external 4 bytes total