制作网站需要学什么,互联网行业分析报告,宁波网页平面设计,h5网页设计模板李航《统计学习方法》之HMM隐马尔可夫模型 文章目录前言一、基本概念1、语言描述#xff1a;2、符号表示3、基本假设4、例子5、隐马尔可夫模型解决的三个基本问题二、概率计算算法1、向前算法算法#xff1a;例题2、向后算法三、学习算法1、监督学习算法背景方法2、无监督学习…李航《统计学习方法》之HMM隐马尔可夫模型 文章目录前言一、基本概念1、语言描述2、符号表示3、基本假设4、例子5、隐马尔可夫模型解决的三个基本问题二、概率计算算法1、向前算法算法例题2、向后算法三、学习算法1、监督学习算法背景方法2、无监督学习Baum-Welch算法四、预测算法1、近似算法2、维特比算法前言 隐马尔可夫在语音识别、自然语言处理、生物信息、模式识别有广泛的应用然而对于隐马尔科夫的流程需要深入的学习和探究才好对马尔科夫场条件随机场有更深入的掌握的理解。 一、基本概念
1、语言描述
该模型是关于时序的概念模型由一个隐藏的马尔科夫链随机生成不可观测的状态序列再由状态生成观测随后产生观测随机序列的过程。
序列的每一个位置又可以看成一个时刻
2、符号表示
1Q表示所有状态集合q表示某一状态 2V表示所有可能的观测集合v表示每一次具体观测。 可以直观看到比如观测红白球问题V就是红球白球两种观测可能 3I表示状态序列i表示具体状态 4O表示对应状态序列的观测序列o表示具体
以上四项问题中已知
5A状态转移矩阵方阵aij是矩阵元素表示在前一时刻是qi的条件下当前时刻为qj的概率。前面状态为qi后面状态为qj 6B观测概率矩阵不一定是方阵bj(k)为其中元素表示在状态是qj的条件下生成观测是vk的概率。 7π是初始状态概率矩阵等于时刻一时状态是qi的概率。
隐马尔可夫模型λA, B, πA和π决定了隐藏的马尔科夫链生成状态序列B决定如何从状态到观测
3、基本假设
1齐次马尔科夫在任意时刻的状态只依赖于前一时刻的状态与其他时刻无关
2观测独立性任意时刻的观测只依赖于当前时刻与其他时刻无关。
4、例子 说明四个盒子随机选一个盒子在在该盒子中随机选一个球记录颜色放回下一步重复重复五次以后得到一个观测序列O(红红白白红)
解答过程
确定状态集合Q{盒子1盒子2盒子3盒子4}
观测集合V{红白}
观测序列和观测序列长度为5
初始概率分布为π0.25, 0.250.25 0.25转置
状态转移概率分布A
备注行数表示上次对应的状态数列数表示本次对应的状态数。
5、隐马尔可夫模型解决的三个基本问题
(1)概率问题模型λ下观测序列O出现的概率PO|λ(2)学习问题观测序列概率P(O|λ)最大用极大似然估计的方法估计参数。
(3)预测问题给定观测序列求最有可能的对应的状态序列。
二、概率计算算法
观测序列的向前算法、向后算法
1、向前算法
算法 输入模型λ观测序列O 输出观测序列概率PO|λ (1)初始化前向概率是初始状态和初始观测的联合概率 (2)递推式计算到下一时刻部分观测序列且在下一时刻处于状态qi的前向概率 其中 表示到t时刻观测到O1,O2…Ot并在t时刻处于状态qj而在t1时刻处于qi的联合概率。 继而求和是为了在时刻t的所有可能N个状态qj求和。
例题
考虑盒子和球模型λ状态集合Q{1,2,3} 观测集合V{红白} A a11(0.5)表示上次选中了盒1这次又选中盒1 a12(0.2)表示上次选中了盒1这次选中了盒2 … aij中i表示上次选中哪个j表示本次选哪个 B 0.5表示盒子1里面是红球的概率剩下的0.5是白球的概率 0.4是盒2中红球0.6是盒2中的白球 0.7是盒3中红球0.3是盒3中的白球 π
初始选中各个盒子的概率。 T3O (红白红)用前向算法计算P(O|λ )。 解答过程 已知状态集合、观测集合、状态转移矩阵初始状态π阵 (1) [说明下标表示时刻括号內部表示状态盒1盒2盒3] a1(1)0.20.50.1 a1(2)0.40.40.16 a1(3)0.4*0.70.28 (2) [备注a21表示上次是盒2这次转向盒1整个大括号里面表示的是在第一次是红球条件下第二次又抽到相应的盒子的概率] a2(1)[a1(1)*a11a1(2)a21a1(3)a31]b1(2) [0.10.50.160.30.280.2]*0.50.077 a2(2)[a1(1)*a12a1(2)a22a1(3)a32]b2(2) [0.10.50.160.30.280.2]*0.60.1104 a2(3)[a1(1)*a13a1(2)a23a1(3)a33]b3(2) [0.10.50.160.30.280.2]*0.30.0606 (3)a3(1)[a2(1)*a11a2(2)*a21a2(3)*a31]*b1(1)0.04187 a3(2)[a2(1)*a12a2(2)*a22a2(3)*a32]*b2(1)0.03551 a3(3)[a2(1)*a13a2(2)*a23a2(3)*a33]*b3(1)0.05284 (4)P(O|λ)0.041870.035510.052840.13022 总结前向算法的核心就是已知最终呈现的结果既要考虑每次试验的所有可能结果又要考虑每次试验场景状态的转换例如上个例子中的3个盒子的转换。每一次递推要保证当下结点的状态是与所要求得所的某一概率所对应的状态是一致的这样当求马尔科夫模型下观测序列所出现的概率时只需要对最后一步的迭代进行求和即可。
2、向后算法 于后向算法直接以盒子隐和球观测的实例为例推导
1初始化第三次取球为红球时候即最终时刻所有状态的概率为1 2逆推迭代倒数第二次观察情况为白球的情况 备注表达式少打了一个Σ符号。 注意状态转移阵中的元素aij对应的下标的对应关系每个表达式固定的是i这是与前向算法不同的地方比如第一个式子中aij i1表示从盒1转移到某盒而前向算法中固定的是j,j1表示的则是从某盒转移到盒1.观测概率矩阵则是对应T次最后一次所观测的值也就是说第二次的后向概率要满足第三次的观测概率。也要乘以满足下次观测的后向概率。
逆推迭代倒数第一次观察情况为红球的情况
3计算加和
可以发现前向算法和后向算法的结果相同 ———————————————— 后向算法例题来自 原文链接https://blog.csdn.net/asdfsadfasdfsa/article/details/80913187
三、学习算法
1、监督学习算法
背景
已知的训练数据包含S个长度相同的观测序列和对应的状态序列{(O1,I1),(O2,I2)…(Os,Is)},接下来用极大似然估计法来估计隐马尔可夫模型的参数
方法
1、转移概率aij的估计样本在t时刻处于状态i时刻t1转移到状态j的频数/所有频数之和 2、观测概率bj(k)估计样本中状态为j并观测为k的频数/所有频数之和 3、初始状态概率Πi的估计为s个样本中初始状态为qi的频率 注因为需要人工标注代价较大所以就会使用无监督学习
2、无监督学习
Baum-Welch算法
四、预测算法
1、近似算法
2、维特比算法