当前位置: 首页 > news >正文

Python建网站的步骤如何制作软件安装包

Python建网站的步骤,如何制作软件安装包,梅河口网站开发,设计工作室取什么名字好1. 线性可分支持向量机 1.1 定义输入数据 假设给定⼀个特征空间上的训练集为#xff1a; 其中#xff0c;(x , y )称为样本点。 x 为第i个实例#xff08;样本#xff09;。 y 为x 的标记#xff1a; 当y 1时#xff0c;x 为正例#xff1b;当y −1时#xff0c;x…1. 线性可分支持向量机 1.1 定义输入数据 假设给定⼀个特征空间上的训练集为 其中(x , y )称为样本点。 x 为第i个实例样本。 y 为x 的标记 当y 1时x 为正例当y −1时x 为负例 正负用-11表示的原因最大的作用就是标记你也可以⽤(2-3)来标记。只是为了⽅便y /y y ∗ y 的过程中刚好可以相等便于之后的计算。 1.2 最大间隔 给定了上⾯提出的线性可分训练数据集通过间隔最大化得到分离超平面为 相应的分类决策函数为 以上决策函数就称为线性可分⽀持向量机。 Φ(x)是某个确定的特征空间转换函数它的作⽤是将x 映射到更高的维度它有⼀个以后我们经常会见到的专有称号核函数。 比如我们看到的特征有2个 x1, x2,组成最先见到的线性函数可以是w1x1 w2x2。但也许这 两个特征并不能很好地描述数据于是我们进行维度的转化变成了 w1x1 w2x2 w3x1x2 w4x^2  w5x^2。于是我们多了三个特征。⽽这个就是笼统地描述x的映射的。 最简单直接的就 是Φ(x) x。 我们要去求出这样⼀个超平面y(x),它能够最优地分离两个集合。 其实也就是我们要去求⼀组 参数w,b),使其构建的超平面函数能够最优地分离两个集合。 如下就是⼀个最优超平面 1.3 推到目标函数 超平面表达式为了方便我们让 则在样本空间中划分超平面可通过如下线性方程来描述 其中 为法向量决定了超平面的方向 b为位移项决定了超平面和原点之间的距离。 显然划分超平面可被法向量w和位移b确定我们把其记为w,b。 样本空间中任意点x到超平面w,b的距离可写成 假设超平面w, b能将训练样本正确分类即对于(x , y ) ∈ D。 令 如图所示距离超平面最近的几个训练样本点使上式等号成立他们被称为“支持向量。 两个异类支持向量到超平面的距离之和为 欲找到具有最⼤间隔的划分超平面也就是要找到能满足下式中约束的参数w和b使得γ最大。  显然为了最⼤化间隔仅需要最大化这等价于最小化。 于是上式可以重写为。 PS||W||是向量与矩阵的范数。 1.4 目标函数的求解 因为目标函数带有⼀个约束条件所以我们可以用拉格朗日乘子法求解。 拉格朗日乘子法 (Lagrange multipliers)是⼀种寻找多元函数在⼀组约束下的极值的方法。 通过引入拉格朗日乘子可将有 d 个变量与 k 个约束条件的最优化问题转化为具有 d k 个变量的 无约束优化问题求解。 经过朗格朗日乘子法我们可以把目标函数转换为 其中要想求得极小值上式后半部分  走到这⼀步这个目标函数还是不能开始求解现在我们的问题是极小极大值问题 。 我们要将其转换为对偶问题变成极⼤极小值问题 ⾸先我们对原目标函数的w和b分别求导 原函数为 对w求偏导 对b求偏导 然后将以上w和b的求导函数重新代⼊原目标函数的w和b中得到的就是原函数的对偶函数 于是现在要求的是这个函数的极大值max(a),写成公式就是  好了现在我们只需要对上式求出极⼤值α然后将α代⼊w求偏导的那个公式 从而求出w。将w代⼊超平面的表达式计算b值现在的w,b就是我们要寻找的最优超平面的参数。  2. 线性不可分支持向量机 2.1 线性不可分的情况 我们可以为分错的点加上一点惩罚对一个分错的点的惩罚函数就是这个点到其正确位置的距离 C是一个由用户去指定的系数表示对分错的点加入多少的惩罚当C很大的时候分错的点 就会更少但是过拟合的情况可能会比较严重当C很小的时候分错的点可能会很多不过可能 由此得到的模型也会不太正确 。 软支持向量机求解 构造拉格朗日公式 求偏导数 转为对偶函数求解。 实际上在处理大型问题时由于存储和计算两方面的要求这些算法往往会失效。  2.2 坐标上升法 固定除 αi 之外的所有参数这时W可看作只是关于 αi 的函数那么直接对 αi 求导优化即 可。可以通过更改优化顺序来使W能够更快地增加并收敛。如果W在内循环中能够很快地达到最 优那么坐标上升法会是一个很高效的求极值方法。 固定以外的所有参数那么将不再是变量可以由其他值推出因为问题中规定了 因此我们最少一次需要选取两个参数做优化比如αi和αj此时可以由和其他参数表示出来。  3. SMO算法 3.1 SVM算法特点 SVM有如下主要几个特点(1)非线性映射是SVM方法的理论基础,SVM利用内积核函数代替 向高维空间的非线性映射(2)对特征空间划分的最优超平面是SVM的目标,最大化分类边际的思想 是SVM方法的核心(3)支持向量是SVM的训练结果,在SVM分类决策中起决定作用的是支持向量。 因此模型需要存储空间小算法鲁棒性强(4)无序任何前提假设不涉及概率测度。 SVM有如下主要几个缺点(1) SVM算法对大规模训练样本难以实施由于SVM是借助二次规 划来求解支持向量而求解二次规划将涉及m阶矩阵的计算m为样本的个数当m数目很大时 该矩阵的存储和计算将耗费大量的机器内存和运算时间。针对以上问题的主要改进有有J.Platt的 SMO算法、T.Joachims的SVM、C.J.C.Burges等的PCGC、张学工的CSVM以及O.L.Mangasarian 等的SOR算法(2) 用SVM解决多分类问题存在困难经典的支持向量机算法只给出了二类分类的算 法而在数据挖掘的实际应用中一般要解决多类的分类问题。可以通过多个二类支持向量机的组 合来解决。主要有一对多组合模式、一对一组合模式和SVM决策树再就是通过构造多个分类器 的组合来解决。主要原理是克服SVM固有的缺点结合其他算法的优势解决多类问题的分类精 度。如与粗集理论结合形成一种优势互补的多类问题的组合分类器。 3.2 SMO算法 SMO算法由Microsoft Research的John C. Platt在1998年提出并成为最快的二次规划优化算 法特别针对线性SVM和数据稀疏时性能更优。第一步选取一对参数选取方法使用启发式方法 Maximal violating pair。第二步固定除被选取的参数之外的其他参数确定W极值。 假设我们选取了初始值满足了问题中的约束条件。接下来我们固定其余参数这样W就是 和的函数。并且和满足条件  由于其余参数都是已知固定因此为了方便可将等式右边标记成实数值。 进而 目标函数 其中 求偏导 带入w, v 求得 最终参数的解为 3.3 参数取值 当a1和a2异号时也就是一个为1一个为-1时他们可以表示成一条直线斜率为1。如下图 横轴是a2纵轴是a1a1和a2既要在矩形方框内也要在直线上因此 ​ 同理当y1和y2同号时 参数计算 b的求解 设在界内则 有代入上式得 两边同乘以y1得: 设在界内则 在界内则情况1和情况2的b值相等任取一个都不在界内则    取值为 情况1和情况2之间的任意值。    3.4 算法终止条件 一个自然的想法是那些违反KKT最严重的点他们对间距贡献最大因此可以通过该启发规则 来完成调整参数的选取。并且此种启发规则计算量小 ①停止条件1满足KTT条件 KTT条件 并设 代入得左移 分别乘以yi 统一得到 等价于 如果对于可以判断 ②停止条件2 ③停止条件3 应该指出检验停机准则的精度要求对算法的执行时间影响很大。过高的要求会非常浪费时 间却不一定会改进决策函数。所以在实际应用中我们要精心选择停机准则. 此外上面停机准则的讨论也会给我们改进算法和提高算法的效率提供一些启发比如在迭代过程 中可以特别注意那些违背停机准则“最严重”的训练点。 其他的求解方法 选块算法  分解算法 工作集的选取
http://www.pierceye.com/news/469863/

相关文章:

  • 做网页兼职网站有哪些建设网站需要花费
  • 如何快速写一个网站黄页网络的推广软件下载
  • 网站建设公司注册enfold wordpress
  • 上海网站建设百度推广公司哪家好模具厂咋做网站
  • 网站背景自动切换织梦网站模板使用教程
  • 网站建设的成果怎么写找人做淘宝网站需要多少钱
  • 网站制作 企业网站建设哪家好tiktok海外运营推广
  • 南昌做网站哪个公司好玉溪市住房和城乡建设局网站
  • 男女做暖网站是什么样子的wordpress 时间轴 主题
  • 国外建设网站jsp网站开发工具
  • 网站流量怎么赚钱wordpress 08影院模板
  • win网站建设网站哪个公司做的好
  • 温州网站运营微信公众号服务号网站开发流程
  • 网站宣传的好处山西房地产网站建设
  • 网站seo工作内容大学做视频网站
  • 台州网站建设企业网站 微信开发
  • 安徽省水利厅网站 基本建设营销策划公司名称
  • 网页设计师培训学院开封做网站优化
  • 山西电力建设三公司网站影院禁止18岁以下观众观影
  • 防伪网站模板网站开发怎么赚钱
  • 医院网站建设意义推广咨询
  • 广东省54个市win10最强优化软件
  • 交换链接网站asp.net企业网站框架
  • 惠州网站建设制作推广医疗设备响应式网站
  • 有哪些做ppt的网站cms网站开发涉及的知识
  • 软件开发成本估算表苏州百度seo代理
  • 网站内部链接有什么作用临安做企业网站的公司
  • 整合营销网站网站建设销售话术开场白
  • 永久免费wap自助建站北京家装设计师排名
  • 西安学校网站建设报价做淘宝客没有网站怎么做