当前位置: 首页 > news >正文

网站维护是谁做的购物商城网站开发实验报告

网站维护是谁做的,购物商城网站开发实验报告,长春网站设计网站建设网站制作880元,一手房发帖网站怎样做二叉树考点主要有: 1.三种遍历方式,以及构造二叉树等#xff1b; 2.求深度,最长直径#xff0c;最长路径,公共祖先等等; 3.合并二叉树#xff0c;翻转二叉树#xff0c;判断平衡性,对称性等; 4.从前序与中序构造二叉树#xff0c;中序与后序构造二叉树#xff0c;二叉… 二叉树考点主要有: 1.三种遍历方式,以及构造二叉树等 2.求深度,最长直径最长路径,公共祖先等等; 3.合并二叉树翻转二叉树判断平衡性,对称性等; 4.从前序与中序构造二叉树中序与后序构造二叉树二叉树序列化等; 5.二叉搜索树 1-1.前序遍历 思路递归法  # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def helper(self, node):if node is not None:self.res.append(node.val)self.helper(node.left)self.helper(node.right)def preorderTraversal(self, root: TreeNode) - List[int]:self.res []self.helper(root)return self.res c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:vectorint res;void help(TreeNode* node){if(node !nullptr){res.push_back(node-val);help(node-left);help(node-right);}}vectorint preorderTraversal(TreeNode* root) {help(root);return res;} }; 思路栈迭代法 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def preorderTraversal(self, root: TreeNode) - List[int]: res []if root is None:return resstack [root]while stack:node stack.pop()if node:res.append(node.val)stack.append(node.right)stack.append(node.left)return res c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:vectorint preorderTraversal(TreeNode* root) {vectorintres;stackTreeNode* stack_A;stack_A.push(root);while(stack_A.size()0){TreeNode* node stack_A.top();stack_A.pop();if(node){res.push_back(node-val);stack_A.push(node-right);stack_A.push(node-left);}}return res;} }; 1-2.N叉树的前序遍历 1.递归法  # Definition for a Node. class Node:def __init__(self, valNone, childrenNone):self.val valself.children children class Solution:def preorder(self, root: Node) - List[int]:res []def helper(node):if node:res.append(node.val)for child in node.children:helper(child)helper(root)# print(res:, res)return res c实现: /* // Definition for a Node. class Node { public:int val;vectorNode* children;Node() {}Node(int _val) {val _val;}Node(int _val, vectorNode* _children) {val _val;children _children;} }; */class Solution { public:vectorint res;void help(Node* node){if(node!NULL){res.push_back(node-val);vectorNode* new_nodes node-children;for(int i0;inew_nodes.size();i){help(new_nodes[i]);}}}vectorint preorder(Node* root) {help(root);return res;} }; 2.迭代法 利用栈 # Definition for a Node. class Node:def __init__(self, valNone, childrenNone):self.val valself.children children class Solution:def preorder(self, root: Node) - List[int]: res []if root is None:return resstack [root]while stack:node stack.pop()if node:res.append(node.val)stack.extend(node.children[::-1])# print(res:, res)return res c实现: /* // Definition for a Node. class Node { public:int val;vectorNode* children;Node() {}Node(int _val) {val _val;}Node(int _val, vectorNode* _children) {val _val;children _children;} }; */ //后进左子树先出左子树 class Solution { public:vectorint preorder(Node* root) {if(rootNULL){return {};}vectorint res;stackNode* stack_A;stack_A.push(root);while (stack_A.size()0){Node* node stack_A.top();stack_A.pop();if(node){res.push_back(node-val);vectorNode* temp_node_list node-children;for (int itemp_node_list.size()-1;i0;i--){stack_A.push(temp_node_list[i]);}}}return res;} }; 1-3.中序遍历 思路递归法  # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right right class Solution:def helper(self, node):if node is not None:self.helper(node.left)self.res.append(node.val)self.helper(node.right)def inorderTraversal(self, root: TreeNode) - List[int]:self.res []self.helper(root)return self.resc实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:vectorintres;void help(TreeNode* node){if(node){help(node-left);res.push_back(node-val);help(node-right);}}vectorint inorderTraversal(TreeNode* root) {help(root);return res;} }; 思路2.栈迭代法 # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right right class Solution(object):def inorderTraversal(self, root)::type root: TreeNode:rtype: List[int]stack []node rootoutput []if root None: return outputwhile node or stack: # 如果node和aStack都是空的说明全查完了。while node: # 如果node是空的说明左边没子节点了。stack.append(node)node node.leftnode stack.pop() # 左边没子节点了就输出栈顶的节点值然后从它右边的子节点继续。output.append(node.val)node node.rightreturn output 1-4.后序遍历 思路递归  # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right right class Solution:def helper(self, node):if node:self.helper(node.left)self.helper(node.right)self.res.append(node.val)def postorderTraversal(self, root: TreeNode) - List[int]:self.res []self.helper(root)return self.resc实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:vectorint res;void help(TreeNode* node){if(node!nullptr){help(node-left);help(node-right);res.push_back(node-val);}}vectorint postorderTraversal(TreeNode* root) {help(root);return res;} }; 思路栈迭代法 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def postorderTraversal(self, root: TreeNode) - List[int]:stack []res []prev Nonewhile root or stack:while root:stack.append(root)root root.leftroot stack.pop()if not root.right or root.right prev:#右子树为空或者为根节点值已经遍历过 prev已经记录右节点的值res.append(root.val)prev rootroot Noneelse:stack.append(root)root root.rightreturn res 1-5.N叉树的后序遍历 1. 解法1 递归法 #递归法# Definition for a Node. class Node:def __init__(self, valNone, childrenNone):self.val valself.children children class Solution:def postorder(self, root: Node) - List[int]:if root is None:return Noneres []def helper(t):if t is None:returnfor child in t.children:helper(child)res.append(t.val)helper(root)return res c实现: /* // Definition for a Node. class Node { public:int val;vectorNode* children;Node() {}Node(int _val) {val _val;}Node(int _val, vectorNode* _children) {val _val;children _children;} }; */class Solution { public:vectorint res;void help(Node* node){if(node NULL){return ;}for(int i0; i node-children.size(); i){help(node-children[i]);} res.push_back(node-val); }vectorint postorder(Node* root) {if (rootNULL){return {};}help(root);return res;} }; 2. 解法2 迭代法 #迭代法# Definition for a Node. class Node:def __init__(self, valNone, childrenNone):self.val valself.children children class Solution:def postorder(self, root: Node) - List[int]:if root is None:return Nonestack [root]res []while stack:node stack.pop()res.append(node.val)for child in node.children:stack.append(child)return res[::-1] 1-6.从上到下打印二叉树 1.BFS:思路利用bfs将每一层节点进行存储  # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution(object):def levelOrder(self, root)::type root: TreeNode:rtype: List[int]if root is None:return []quene [root]res []while quene:node quene.pop(0)res.append(node.val)if node.left is not None:quene.append(node.left)if node.right is not None:quene.append(node.right)return resc实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/ class Solution { public:vectorint levelOrder(TreeNode* root) {vectorintres;if(!root){return {};}queueTreeNode* queue_A;queue_A.push(root);while(!queue_A.empty()){TreeNode* node queue_A.front();res.push_back(node-val);queue_A.pop();if(node-left){queue_A.push(node-left);}if(node-right){queue_A.push(node-right);}}return res;} }; 1-7.从上到下打印二叉树 II 思路从跟节点开始一层一层遍历 1.递归法要注意的是判断节点是同一层此时可以传入一个level参数用于控制层数 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def levelOrder(self, root: TreeNode) - List[List[int]]:res []def backtrace(t, level):if t:if len(res)level:res.append([])res[level].append(t.val)backtrace(t.left,level1)backtrace(t.right,level1)backtrace(root,0)return res2.迭代法 BFS # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def levelOrder(self, root: TreeNode) - List[List[int]]:res []if not root:return resquene [root]while quene: temp []# print(len(quene):, len(quene))for i in range(len(quene)):node quene.pop(0)temp.append(node.val) # print(temp:, temp) if node.left:quene.append(node.left)if node.right: quene.append(node.right)res.append(temp)return res c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/ class Solution { public:vectorvectorint levelOrder(TreeNode* root) {vectorvectorint res; if(!root){return {};}queueTreeNode* queue_A;queue_A.push(root);while(!queue_A.empty()){ vectorint temp_res;int count queue_A.size();for (int i0;icount;i){ TreeNode* node queue_A.front();temp_res.push_back(node-val);queue_A.pop();if(node-left){queue_A.push(node-left);}if(node-right){queue_A.push(node-right);}}res.push_back(temp_res); }return res;}};1-8.从上到下打印二叉树 III 1.思路BFS :将每一层节点存入队列进行遍历,对奇数层进行逆序加入即可 # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution(object):def levelOrder(self, root)::type root: TreeNode:rtype: List[List[int]]if root is None:return []quene [root]res []while quene:temp []for i in range(len(quene)):node quene.pop(0)temp.append(node.val)if node.left is not None:quene.append(node.left) if node.right is not None:quene.append(node.right)if len(res)%21:res.append(temp[::-1])else:res.append(temp)# print(res:, res)return res c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/ class Solution { public:vectorvectorint levelOrder(TreeNode* root) {vectorvector int res;if (rootNULL){return {};}queueTreeNode* queue_A;queue_A.push(root);while(!queue_A.empty()){vector int temp_res;int count queue_A.size();for (int i0;icount;i){TreeNode* node queue_A.front(); temp_res.push_back(node-val);queue_A.pop();if(node-left){queue_A.push(node-left);}if(node-right){queue_A.push(node-right);}}if(res.size()%20){res.push_back(temp_res);}else{reverse(temp_res.begin(),temp_res.end());res.push_back(temp_res);} }return res;} }; 1-9.二叉树的锯齿形层次遍历 思路:将每一层的结果进行保存,最后在奇数层反转即可 1.递归解法  # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def help(self,node,level):if node:if len(self.res) level:self.res.append([])self.res[level].append(node.val)self.help(node.left,level1)self.help(node.right,level1)def zigzagLevelOrder(self, root: TreeNode) - List[List[int]]:self.res []if root is None:return self.resself.help(root, 0)for i in range(len(self.res)):if i%21:self.res[i] self.res[i][::-1]return self.res 2.迭代解法 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def zigzagLevelOrder(self, root: TreeNode) - List[List[int]]:res []if root is None:return resquene [root]while quene:temp []for i in range(len(quene)):node quene.pop(0)temp.append(node.val)if node.left is not None:quene.append(node.left)if node.right is not None:quene.append(node.right)res.append(temp)for i in range(len(res)):if i%21:res[i] res[i][::-1] return res 1-10.递增顺序查找树 思路:中序遍历获取每个节点的值,在利用值构建树  # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def increasingBST(self, root: TreeNode) - TreeNode:res []if root is None:return resdef helper(node):if node:helper(node.left)res.append(node.val)helper(node.right)helper(root)print(res:, res)#构建树new_node TreeNode(res[0])current_nodenew_nodefor i in range(len(res)-1):current_node.left Nonecurrent_node.right TreeNode(res[i1])current_node current_node.rightreturn new_node c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:vector int res;void help(TreeNode* node){if(node nullptr){return ;}help(node-left);res.push_back(node-val);help(node-right);}TreeNode* increasingBST(TreeNode* root) {if(root nullptr){return nullptr;}help(root);TreeNode* new_root new TreeNode(res[0]);TreeNode* temp_node new_root;for(int i1;ires.size();i){temp_node-left nullptr;temp_node-right new TreeNode(res[i]);temp_node temp_node-right;}return new_root;} }; 1-11. 二叉树的右视图 思路每一层进行遍历存储结果,将每一层的右侧结果进行输出即可。 1.迭代法 # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right right class Solution:def rightSideView(self, root: TreeNode) - List[int]:res []if root is None:return resqueue [root]while queue:size len(queue)for i in range(len(queue)):node queue.pop(0)if i size - 1 :res.append(node.val)if node.left is not None:queue.append(node.left)if node.right is not None:queue.append(node.right)return res c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:vectorint res;vectorint rightSideView(TreeNode* root) {if(root nullptr) {return {};}queueTreeNode* queue_A(r);queue_A.push(root);while(!queue_A.empty()){int count queue_A.size();for (int i 0; i count; i){TreeNode* temp_node queue_A.front();if(i count - 1){res.push_back(temp_node-val);}queue_A.pop();if(temp_node-left!nullptr){queue_A.push(temp_node-left);}if(temp_node-right!nullptr){queue_A.push(temp_node-right);} }}return res;} }; 2.递归法 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def rightSideView(self, root: TreeNode) - List[int]:res []if root is None:return resdef helper(node, level):if node is not None:if len(res) level:res.append([])res[level].append(node.val)helper(node.left,level1)helper(node.right,level1)helper(root, 0)# print(res:, res)fin_res []for i in range(len(res)):fin_res.append(res[i][-1])return fin_res 1-12. 找树左下角的值 思路:bfs python: # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right right class Solution:def findBottomLeftValue(self, root: TreeNode) - int:nodes [root]res []while nodes:temp nodes[0]for i in range(len(nodes)):node nodes.pop(0)if node.left:nodes.append(node.left)if node.right:nodes.append(node.right) if len(nodes) 0:return temp.val c: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:int findBottomLeftValue(TreeNode* root) {queueTreeNode* nodes;nodes.push(root);while(!nodes.empty()){TreeNode* temp nodes.front();int count nodes.size();for(int i 0; i count; i){TreeNode* node nodes.front();nodes.pop();if(node-left){nodes.push(node-left);}if(node-right){nodes.push(node-right);}}if(nodes.size() 0){return temp-val;}}return -1;} }; 2-1.二叉树的深度 递归:python代码 # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution(object):def maxDepth(self, root)::type root: TreeNode:rtype: intif not root:return 0return max(self.maxDepth(root.left),self.maxDepth(root.right))1 c代码: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/ class Solution { public:int maxDepth(TreeNode* root) {if(rootNULL){return 0;}return max(maxDepth(root-left),maxDepth(root-right))1;} }; 2-2二叉树的最小深度 思路;求的就是根节点到叶子节点的最小值 python代码: # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right right class Solution:def minDepth(self, root: TreeNode) - int:if root is None:return 0if root.left and root.right:return min(self.minDepth(root.left),self.minDepth(root.right))1elif root.left:return self.minDepth(root.left)1else:return self.minDepth(root.right)1 c代码: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:int minDepth(TreeNode* root) {if (root nullptr){return 0;}if(root-left root-right){return min(minDepth(root-left),minDepth(root-right))1;}else if(root-left){return minDepth(root-left)1;}else{return minDepth(root-right)1;}} }; 2-3.二叉树的直径 思路:递归函数用来获取每一层深度然后在分别对左右子树深度求和这里要注意的是最长直径不一定过根节点所有要用一个变量存储遍历每个节点时的最大直径 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def get_depth(self, node):if node is None:return 0l self.get_depth(node.left)r self.get_depth(node.right)self.max_value max(self.max_value, lr)return max(l,r)1def diameterOfBinaryTree(self, root: TreeNode) - int:self.max_value 0if root is None:return 0self.get_depth(root)return self.max_value c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/ class Solution { public:int max_value0;int help(TreeNode* node){if(!node){return 0;}int l help(node-left);int r help(node-right);max_value max(max_value, lr);return max(l,r)1;}int diameterOfBinaryTree(TreeNode* root) {help(root);return max_value;} }; 2-4.二叉树中的最大路径和 递归 主要是要找准递归终止条件和递归出口,终止条件就是节点为none自然返回值为0, 递归出口就是节点本身值max(左节点增益值右节点增益值) # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right right class Solution:def helper(self, node):if node is None:return 0left_gain self.helper(node.left)right_gain self.helper(node.right)self.max_gain max(self.max_gain,left_gainright_gainnode.val)return max(node.valleft_gain,node.valright_gain,0)def maxPathSum(self, root: TreeNode) - int:self.max_gain float(-inf)self.helper(root)return self.max_gain c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:int max_valueINT_MIN;int helper(TreeNode *node){if(!node){return 0;}int left_gain helper(node-left);int right_gain helper(node-right);max_value max(max_value, node-valleft_gainright_gain);return max(max(node-valleft_gain,0),node-valright_gain);}int maxPathSum(TreeNode* root) {helper(root);return max_value;} }; 2-5.路径总和 1.递归法  # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution(object):def hasPathSum(self, root, sum)::type root: TreeNode:type sum: int:rtype: boolif not root:return Falseif not root.left and not root.right and root.valsum:return Truesum -root.valreturn self.hasPathSum(root.left,sum) or self.hasPathSum(root.right,sum) c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:bool hasPathSum(TreeNode* root, int targetSum) {if(root nullptr){return false;}if (root-left nullptr root-right nullptr targetSumroot-val){return true;}targetSum -root-val;return hasPathSum(root-left,targetSum) || hasPathSum(root-right,targetSum);} }; 2.利用栈--DFS class Solution(object):def hasPathSum(self, root, sum)::type root: TreeNode:type sum: int:rtype: bool# # #递归终止条件 # if root is None:# return False# if root.left is None and root.right is None and root.val sum:# return True# sum sum - root.val# # print(sum:, sum)# return self.hasPathSum(root.left, sum) or self.hasPathSum(root.right, sum) if not root:return Falsequene [(root, root.val)]while quene:node,value quene.pop()if node.left is None and node.right is None and valuesum:return Trueif node.left is not None:quene.append((node.left,valuenode.left.val))if node.right is not None:quene.append((node.right,valuenode.right.val)) # print(quene:,quene)return False 3.利用队列--BFS class Solution(object):def hasPathSum(self, root, sum)::type root: TreeNode:type sum: int:rtype: bool# # #递归终止条件 # if root is None:# return False# if root.left is None and root.right is None and root.val sum:# return True# sum sum - root.val# # print(sum:, sum)# return self.hasPathSum(root.left, sum) or self.hasPathSum(root.right, sum) if not root:return Falsequene [(root, root.val)]while quene:node,value quene.pop(0)if node.left is None and node.right is None and valuesum:return Trueif node.left is not None:quene.append((node.left,valuenode.left.val))if node.right is not None:quene.append((node.right,valuenode.right.val)) # print(quene:,quene)return False 2-6:路径总和 II 思路回溯 这种里面要调用两层回溯的  track就不要放在递归函数里面了 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def dfs(self, node, sum_):if node is None:return 0store self.track.copy()self.track.append(node.val)# print(self.track:, self.track)if node.left is None and node.right is None and sum_node.val: self.res.append(self.track)sum_ - node.valself.dfs(node.left, sum_)self.dfs(node.right, sum_)# self.track.pop()self.track storedef pathSum(self, root: TreeNode, sum: int) - List[List[int]]:self.res []self.track []self.dfs(root, sum)return self.res c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:vectorvectorint res;vectorint track;void dfs(TreeNode* root, int targetSum){if(rootnullptr){return ;}vectorint store;store track;track.push_back(root-val); if(root-leftnullptr root-rightnullptr targetSumroot-val){res.push_back(track);}targetSum - root-val;dfs(root-left, targetSum);dfs(root-right, targetSum);track store;}vectorvectorint pathSum(TreeNode* root, int targetSum) {dfs(root, targetSum);return res;} }; 2-7:路径总和 III 思路用一个列表存储从节点开始的数字和 # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right right #用列表记录从每一个节点开始的和 class Solution:def dfs(self, node, sum_list, sum):if node is None:return 0 sum_list [numnode.val for num in sum_list]sum_list.append(node.val)for num in sum_list:if numsum:self.res1self.dfs(node.left, sum_list, sum)self.dfs(node.right, sum_list, sum)def pathSum(self, root: TreeNode, sum: int) - int:self.res 0self.dfs(root, [], sum)return self.res c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:int res;void dfs(TreeNode* node, vectorint num_list, int sum){if(node nullptr){return ;}for (int i0; inum_list.size(); i){num_list[i] node-val;} num_list.push_back(node-val);for(int i0; inum_list.size(); i){if(num_list[i]sum){res;}}dfs(node-left, num_list, sum);dfs(node-right, num_list, sum);}int pathSum(TreeNode* root, int sum) {vectorint num_list;dfs(root, num_list, sum);return res;} }; 2-8.二叉树的所有路径 给定一个二叉树返回所有从根节点到叶子节点的路径 思路dfs # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right right class Solution:def dfs(self, node,path):if not node:returnpath str(node.val)if node.left is None and node.right is None:self.res.append(path)else:path-self.dfs(node.left, path)self.dfs(node.right, path)def binaryTreePaths(self, root: TreeNode) - List[str]:self.res []self.dfs(root, )return self.res c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:vectorstring res;void dfs(TreeNode* node, string path){if(node nullptr){return ;}pathto_string(node-val);if(node-left nullptr node-right nullptr){res.push_back(path);}else{path-;dfs(node-left, path);dfs(node-right, path);}}vectorstring binaryTreePaths(TreeNode* root) {dfs(root, );return res;} }; 2-9.求根节点到叶节点数字之和 python: # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right right class Solution:def help(self, node, path):if node is None:returnpath str(node.val)if node.left is None and node.right is None:self.res.append(path)else: self.help(node.left, path)self.help(node.right, path)def sumNumbers(self, root: TreeNode) - int:self.res []self.help(root, )return sum(map(int, self.res)) 代码: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:vectorstring res;void help(TreeNode* node, string path){if(node nullptr){return ;}path to_string(node-val);if(node-left nullptr node-right nullptr){res.push_back(path);}else{help(node-left, path);help(node-right, path);}}int sumNumbers(TreeNode* root) {help(root, );int int_res;for(auto str_:res){int_res atoi(str_.c_str());}return int_res;} }; 3-1.合并二叉树 思路:采用前序遍历访问二叉树如果节点其一为none就返回另一个 1.递归法 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def mergeTrees(self, t1: TreeNode, t2: TreeNode) - TreeNode:if t1 is None:return t2if t2 is None:return t1t1.valt2.valt1.left self.mergeTrees(t1.left,t2.left)t1.right self.mergeTrees(t1.right,t2.right)return t1 2.迭代法 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def mergeTrees(self, t1: TreeNode, t2: TreeNode) - TreeNode:if t1 is None:return t2stack [(t1,t2)]while stack:t stack.pop()if t[0] is None or t[1] is None:continuet[0].val t[1].valif t[0].left is None:t[0].left t[1].leftelse:stack.append((t[0].left, t[1].left))if t[0].right is None:t[0].right t[1].rightelse:stack.append((t[0].right, t[1].right))return t1c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {if(root1 nullptr){return root2;}if(root2 nullptr){return root1;}root1-val root2-val;root1-left mergeTrees(root1-left, root2-left);root1-right mergeTrees(root1-right, root2-right);return root1;} }; 3-2翻转二叉树 思路:递归遍历左右子树进行交换即可 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def invertTree(self, root: TreeNode) - TreeNode:if root is None:return Noneleft self.invertTree(root.left)right self.invertTree(root.right)root.left rightroot.right leftreturn root c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:TreeNode* invertTree(TreeNode* root) {if(root nullptr){return nullptr;}TreeNode* left invertTree(root-left);TreeNode* right invertTree(root-right);root-left right;root-right left;return root;} }; 3-3.检查二叉树平衡性 思路递归求解节点左右分支的最长路径如果路径之差绝对值大于1就认为是非平衡。  # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right right class Solution:def depth(self, node):if node is None:return 0return max(self.depth(node.left), self.depth(node.right)) 1def isBalanced(self, root: TreeNode) - bool:if root is None:return Trueif abs(self.depth(root.left) - self.depth(root.right)) 1:return Falsereturn self.isBalanced(root.left) and self.isBalanced(root.right) c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/ class Solution { public:int get_height(TreeNode* node){if(node NULL){return 0;}return max(get_height(node-left), get_height(node-right))1;}bool isBalanced(TreeNode* root) {if(root NULL){return true;}int left_value get_height(root-left);int right_value get_height(root-right);// coutleft_valueendl;// coutright_valueendl;if(abs(left_value-right_value)1){return false;}return isBalanced(root-left) isBalanced(root-right);} }; 3-4.对称二叉树 1.解法1 bfs 对每个节点的左子树和右子树进行判断相等 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def isSymmetric(self, root: TreeNode) - bool:def check(t1,t2):if t1None and t2None:return Trueif t1None or t2None:return Falseif (t1.val ! t2.val):return Falsereturn check(t1.left,t2.right) and check(t1.right,t2.left)return check(root,root) c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:bool dfs(TreeNode* t1, TreeNode* t2){if(t1nullptr t2nullptr){return true;}if(t1nullptr || t2nullptr){return false;}return dfs(t1-left,t2-right) dfs(t1-right,t2-left);}bool isSymmetric(TreeNode* root) {return dfs(root, root);} }; 2.解法2 dfs 首先对根节点左子树进行前序遍历并存储值对根节点右子树的右分支进行遍历在对左分支进行遍历并存储值最后比较两个列表的值。 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def isSymmetric(self, root: TreeNode) - bool:if rootNone:return Truedef leftsearch(t1, left):if t1None:left.append(None)else:left.append(t1.val)leftsearch(t1.left,left)leftsearch(t1.right,left)def rightsearch(t2, right):if t2None:right.append(None)else:right.append(t2.val)rightsearch(t2.right,right)rightsearch(t2.left,right)left []right []leftsearch(root.left, left)rightsearch(root.right, right)if leftright:return Trueelse:return False 3-5.相同的树 思路判断节点 相等 判断节点的值相等 在递归左右子树 # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right right class Solution:def isSameTree(self, p: TreeNode, q: TreeNode) - bool:if not p and not q:#两个节点都为空return Trueif (not p and q) or (not q and p):#两个节点只要有一个不为空return Falseif p.val ! q.val:return Falsereturn self.isSameTree(p.left,q.left) and self.isSameTree(p.right,q.right) c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:bool isSameTree(TreeNode* p, TreeNode* q) {if(pnullptr qnullptr){return true;}if(pnullptr || qnullptr){return false;}if(p-val ! q-val){return false;}return isSameTree(p-left,q-left) isSameTree(p-right,q-right);} }; 3-6.左叶子之和 思路判断左叶子的条件节点的左指针不为none,同时节点的左指针的左指针和节点的左指针的右指针为none 1.递归写法 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def sumOfLeftLeaves(self, root: TreeNode) - int:self.result 0 def get_res(t):if t is None:return 0 if t is not None and t.left is not None and t.left.left is None and t.left.right is None:self.result self.result t.left.val get_res(t.left)get_res(t.right)get_res(root)return self.result c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/ class Solution { public:int res;void help(TreeNode* node){if(node NULL){return ;}if(node-left !NULL node-left-left NULL node-left-right NULL){resnode-left-val;}help(node-left);help(node-right);}int sumOfLeftLeaves(TreeNode* root) {if(root NULL){return 0;}help(root);return res;} }; 2.迭代写法 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def sumOfLeftLeaves(self, root: TreeNode) - int:if root is None:return 0 stack [root]res 0while stack:node stack.pop()if node is not None:if node.left is not None and node.left.left is None and node.left.right is None:res node.left.valstack.append(node.left)stack.append(node.right)return res 4-1.从前序与中序遍历序列构造二叉树 思路 终止条件:前序或中序数组为空 根据前序数组第一个元素拼出根节点再将前序数组和中序数组分成两半递归的处理前序数组左边和中序数组左边递归的处理前序数组右边和中序数组右边。 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def buildTree(self, preorder: List[int], inorder: List[int]) - TreeNode: # 递归终止条件 前序遍历节点数或中序遍历节点数为if len(preorder)0 or len(inorder)0:return Noneroot TreeNode(preorder[0])#根据前序遍历特点创建根节点#再根据中序遍历特点用根节点找出左右子树的分界点mid_index inorder.index(preorder[0])#再利用中序遍历和前序遍历的左子树节点个数相等特点 构造根节点左子树root.left self.buildTree(preorder[1:mid_index1],inorder[:mid_index])#再利用中序遍历和前序遍历的右子树节点个数相等特点 构造根节点右子树root.right self.buildTree(preorder[mid_index1:],inorder[mid_index1:])return root c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:TreeNode* buildTree(vectorint preorder, vectorint inorder) {if(preorder.empty() || preorder.empty()) {return nullptr;}TreeNode* root new TreeNode(preorder[0]);int root_value preorder[0];int middle 0;for (int i0;iinorder.size();i){if(inorder[i]root_value){middle i;break;}}vectorint leftInorder(inorder.begin(), inorder.begin() middle);vectorint rightInorder(inorder.begin() middle 1, inorder.end());vectorint leftPreorder(preorder.begin()1, preorder.begin() middle1);vectorint rightPreorder(preorder.begin() middle 1, preorder.end());root-left buildTree(leftPreorder,leftInorder);root-right buildTree(rightPreorder,rightInorder);return root;} }; 4-2.从中序与后序遍历序列构造二叉树 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:TreeNode* buildTree(vectorint inorder, vectorint postorder) {if(inorder.empty() || postorder.empty()){return nullptr;}TreeNode* root new TreeNode(postorder[postorder.size()-1]);int root_value postorder[postorder.size()-1];int middle 0;for (int i0; iinorder.size(); i){if(inorder[i] root_value){middle i;break;}}// coutmiddle:middleendl;vectorint left_inorder(inorder.begin(), inorder.begin() middle);vectorint right_inorder(inorder.begin() middle 1, inorder.end());vectorint left_postorder(postorder.begin(), postorder.begin() middle);vectorint right_postorder(postorder.begin() middle, postorder.end() - 1);root-left buildTree(left_inorder, left_postorder);root-right buildTree(right_inorder, right_postorder);return root;} }; 思路和上一题类似 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def buildTree(self, inorder: List[int], postorder: List[int]) - TreeNode:#递归终止条件if len(inorder)0 or len(postorder)0:return None#创建根节点root TreeNode(postorder[-1])#根据中序遍历获取分离点mid_index inorder.index(postorder[-1])# print(mid_index:,mid_index)#获取左子树root.left self.buildTree(inorder[:mid_index],postorder[:mid_index])#获取右子树root.right self.buildTree(inorder[mid_index1:],postorder[mid_index:-1])return root c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:TreeNode* buildTree(vectorint inorder, vectorint postorder) {if(inorder.empty() || postorder.empty()){return nullptr;}TreeNode* root new TreeNode(postorder[postorder.size()-1]);int root_value postorder[postorder.size()-1];int middle 0;for (int i0; iinorder.size(); i){if(inorder[i] root_value){middle i;break;}}// coutmiddle:middleendl;vectorint left_inorder(inorder.begin(), inorder.begin() middle);vectorint right_inorder(inorder.begin() middle 1, inorder.end());vectorint left_postorder(postorder.begin(), postorder.begin() middle);vectorint right_postorder(postorder.begin() middle, postorder.end() - 1);root-left buildTree(left_inorder, left_postorder);root-right buildTree(right_inorder, right_postorder);return root;} }; 由上面两题可知对于前序遍历跟左右中序遍历左跟右后序遍历左右跟 采前序遍历和中序遍历中序遍历和后序遍历都能通过根节点分离出左右而前序遍历和后序遍历就不能故而后者无法恢复出二叉树 4-3.二叉树的序列化与反序列化 # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Codec:def serialize(self, root):Encodes a tree to a single string.:type root: TreeNode:rtype: str# return self.pre_order(root)# self.in_order(root)from collections import dequeres []queue [root]#deque([root])while queue:root queue.pop(0)#left()if root:res.append(root.val)queue.extend([root.left, root.right])else:res.append(#)return str(res)def deserialize(self, data):Decodes your encoded data to tree.:type data: str:rtype: TreeNode# print(self.pre_rest, self.in_res)print(data)nodes [(TreeNode(v) if v ! # else None) for v in eval(data)]i, j, n 0, 1, len(nodes)while j n:if nodes[i]:nodes[i].left nodes[j]j 1nodes[i].right nodes[j]j 1i 1return nodes[0] # Your Codec object will be instantiated and called as such: # ser Codec() # deser Codec() # ans deser.deserialize(ser.serialize(root)) 5-1.二叉搜索树的最近公共祖先 思路 1.从根节点开始遍历树 2.如果节点 p 和节点 q 都在右子树上那么以右孩子为根节点继续 1 的操作 3.如果节点 p 和节点 q 都在左子树上那么以左孩子为根节点继续 1 的操作 4.如果条件 2 和条件 3 都不成立这就意味着我们已经找到p 和q 的公共祖先了 解法1:当成普通二叉树 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def lowestCommonAncestor(self, root: TreeNode, p: TreeNode, q: TreeNode) - TreeNode:if rootp or rootq or root is None:return rootleft_node self.lowestCommonAncestor(root.left,p,q)right_node self.lowestCommonAncestor(root.right,p,q)if left_node is None:return right_nodeif right_node is None:return left_nodereturn root 解法2利用二叉搜索树特点根节点值和左右子树值大小的特点.递归法 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right None #利用二叉搜索树的特点 class Solution:def lowestCommonAncestor(self, root: TreeNode, p: TreeNode, q: TreeNode) - TreeNode:print(root.val:, root.val)if root.val min(p.val, q.val):#都大于根节点的值 将右孩子作为根节点return self.lowestCommonAncestor(root.right, p, q)elif root.val max(p.val, q.val):#都小于根节点的值 将左孩子作为根节点return self.lowestCommonAncestor(root.left, p, q)else:#找到公共祖先return root c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/ class Solution { public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {if(root-valmin(p-val,q-val)){return lowestCommonAncestor(root-right,p,q);}if(root-valmax(p-val,q-val)){return lowestCommonAncestor(root-left,p,q);}return root;} }; 解法3.迭代法 #利用二叉搜索树的特点 class Solution:def lowestCommonAncestor(self, root: TreeNode, p: TreeNode, q: TreeNode) - TreeNode:node rootwhile node:if node.val min(p.val,q.val):node node.rightelif node.val max(p.val,q.val):node node.leftelse:return node 5-2:二叉树的最近公共祖先 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def lowestCommonAncestor(self, root: TreeNode, p: TreeNode, q: TreeNode) - TreeNode:if root is None or rootp or rootq:#递归终止条件 节点为空 或者节点等于p,q其中之一return rootleft self.lowestCommonAncestor(root.left, p, q)#遍历左子树right self.lowestCommonAncestor(root.right, p, q)#遍历右子树if left is None:#左子树为空 就去右子树 return rightif right is None:#右子树为空 就去左子树 return leftreturn root#左右子树都不为空 说明找到了节点  c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/ class Solution { public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {if (root NULL){return NULL;}if(root-val p-val || root-val q-val){return root;}TreeNode* left_node lowestCommonAncestor(root-left,p,q);TreeNode* right_node lowestCommonAncestor(root-right,p,q);if(left_node !NULL right_node!NULL){return root;}if (left_nodeNULL){return right_node;}return left_node;} }; 5-3.二叉搜索树中的搜索 思路利用二叉树特点 1.从根节点遍历二叉树 2.如果给定值小于跟节点值根节点替换为右孩子节点否则根节点替换为左孩子节点 1.递归法 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right None #递归法 class Solution:def searchBST(self, root: TreeNode, val: int) - TreeNode:if not root or root.val val:#截止条件return rootif root.val val:return self.searchBST(root.right,val)else:return self.searchBST(root.left,val) c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:TreeNode* searchBST(TreeNode* root, int val) {if(root nullptr){return root;}if(root-val val){return root;}if(root-val val){return searchBST(root-left,val);}else{return searchBST(root-right,val);}} }; 2.迭代法 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right None #迭代法 class Solution:def searchBST(self, root: TreeNode, val: int) - TreeNode:while root is not None and root.val !val:root root.left if root.val val else root.rightreturn root 5-4.把二叉搜索树转换为累加树  思路其实就是逆中序遍历利用二叉搜索树的特点跟节点值更新为右孩子和根节点值之和左孩子值更新为根节点与左孩子值之和。 1.迭代法 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def convertBST(self, root: TreeNode) - TreeNode:stack []node rootvalue 0while stack or node:while node:#把跟节点与右子树节点依次压进栈 实现逆中序遍历stack.append(node)node node.rightprint(stack:, stack)node stack.pop()print(node:,node)value node.valnode.val valueprint(node.left:, node.left)node node.leftreturn root 2.递归法 其中res存储逆中序遍历(右根左)的值便于查看 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:def helper(self, node):if node:self.helper(node.right)# self.res.append(node.val)self.valuenode.valnode.val self.valueself.helper(node.left)def convertBST(self, root: TreeNode) - TreeNode:# self.res []self.value 0self.helper(root)return root c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:int res 0;void help(TreeNode* node){if(node nullptr){return ;}help(node-right);res node-val;node-val res;help(node-left);}TreeNode* convertBST(TreeNode* root) {help(root);return root;} }; 5-5.删除二叉搜索树中的节点 #思路中序遍历如果值大于节点值则去右子树否则去左子树 #如果 找的的节点是叶子节点则进行删除置None即可 #如果找到的节点不是叶子节点有右子树则用后继节点(比当前节点值大的最小值)代替找到的节点在将后继节点置None #如果找到的节点不是叶子节点有左子树则用前驱节点(比当前节点值小的最大值)代替找到的节点在将前驱节点置None  # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution:#获取节点的后继节点(比当前节点大的最小值)def get_successor(self, node):node node.rightwhile node.left:node node.leftreturn node.val#获取节点的前驱节点(比当前节点小的最大值)def get_pressor(self, node):node node.leftwhile node.right:node node.rightreturn node.valdef deleteNode(self, root: TreeNode, key: int) - TreeNode:if root is None:return Noneif root.valkey:root.right self.deleteNode(root.right, key)elif root.valkey:root.left self.deleteNode(root.left, key)else:if root.left is None and root.right is None:#叶子节点root None elif root.right:#要删除的节点有右子树 利用后继节点root.val self.get_successor(root)root.right self.deleteNode(root.right,root.val)#删除后继节点else:#要删除的节点有左子树 利用前驱节点root.val self.get_pressor(root)root.left self.deleteNode(root.left,root.val)#删除前驱节点 return rootc实现:  /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:int get_succesor(TreeNode* node){//得到后继节点node node-right;while(node-left ! nullptr){node node-left;}return node-val;}int get_pressor(TreeNode* node){node node-left;while(node-right ! nullptr){node node-right;}return node-val;}TreeNode* deleteNode(TreeNode* root, int key) {if(root nullptr){return nullptr;}if(root-val key){root-right deleteNode(root-right, key);}else if(root-val key){root-left deleteNode(root-left, key);}else{if(root-left nullptr root-right nullptr){root nullptr;}else if(root-right ! nullptr){root-val get_succesor(root);root-right deleteNode(root-right, root-val);}else{root-val get_pressor(root);root-left deleteNode(root-left, root-val);}}return root;} }; 5-6.不同的二叉搜索树 思路:卡塔兰数 将 1⋯(i−1) 序列作为左子树将 (i1)⋯n 序列作为右子树。接着我们可以按照同样的方式递归构建左子树和右子树。 在上述构建的过程中由于根的值不同因此我们能保证每棵二叉搜索树是唯一的.也就得到卡塔兰数 class Solution(object):def numTrees(self, n)::type n: int:rtype: int#状态方程 和G(j-1) * G(n-j)dp [0]*(n1)#0 1树都为1dp[0], dp[1] 1, 1for i in range(2,n1):for j in range(1,i1):dp[i] dp[j-1]*dp[i-j]# print(dp:, dp)return dp[-1] c实现: class Solution { public:int numTrees(int n) {vectorint res(n1,0); res[0] 1;res[1] 1;for (int i2;in1;i){for (int j1;ji1;j){res[i] res[j-1] * res[i-j];}}return res[n];} }; 5-7.不同的二叉搜索树 II 思路: # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right right class Solution(object):def generateTrees(self, n)::type n: int:rtype: List[TreeNode]if n0:return []def build_tree(left,right):if left right:#递归终止条件 如果左边计数大于右边 说明要返回空值return [None]all_trees []for i in range(left, right1):left_trees build_tree(left, i-1)right_trees build_tree(i1, right)for l in left_trees:#遍历可能的左子树for r in right_trees:#遍历可能的右子树cur_tree TreeNode(i)#根节点cur_tree.left lcur_tree.right rall_trees.append(cur_tree)return all_treesres build_tree(1,n)return res 5.8.验证二叉搜索树 思路1:递归处理右子树节点和 左子树节点的值和上下界限的大小 # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val x # self.left None # self.right Noneclass Solution(object):def isValidBST(self, root)::type root: TreeNode:rtype: booldef helper(node, lowerfloat(-inf), upperfloat(inf)):if node is None:#递归终止条件 节点为Nonereturn Trueval node.val#获取节点值#如果节点值大于上界或者小于下界 ,返回falseif val upper or val lower :return False#递归右子树 对于右子树 具备下界if not helper(node.right, val, upper):return False#递归左子树 对于左子树 具备上界if not helper(node.left, lower, val):return Falsereturn Truereturn helper(root) c实现: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/ class Solution { public:bool help(TreeNode* node, long long lower,long long upper){if(node nullptr){return true;}if(node-val lower || node-val upper){return false;}if(!help(node-right, node-val, upper)){return false;}if(!help(node-left, lower, node-val)){return false;}return true;}bool isValidBST(TreeNode* root) {if(root nullptr){return true;}return help(root, LONG_MIN, LONG_MAX);} };思路2 :利用中序遍历的特点,遍历左子树和根节点,如果值不满足二叉搜索数特点就返回false. # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val x # self.left None # self.right None class Solution(object):def isValidBST(self, root):stack []node rootinorder_value float(-inf)while stack or node:#出栈终止条件while node:#进栈stack.append(node)node node.leftnode stack.pop()#左节点# 如果中序遍历得到的节点的值小于等于前一个 inorder_value说明不是二叉搜索树if node.val inorder_value:return Falseinorder_value node.val nodenode.rightreturn True思路3:递归实现中序遍历 左 跟 右 也就是遍历的后一个节点值要大于上一个 否则不满足二叉搜索树特点 # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right right #中序遍历 左跟右 class Solution:def __init__(self):self.pre float(-inf)def isValidBST(self, root: TreeNode) - bool:if root is None:return Trueif not self.isValidBST(root.left):#先访问左子树return Falseif root.valself.pre:#在访问当前节点return False;print(before self.pre:,self.pre)self.pre root.valprint(after self.pre:,self.pre)return self.isValidBST(root.right)#在访问右子树 5.9将有序数组转换为二叉搜索树 思路:二分法 python代码  # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right right class Solution:def help(self, left, right):if left right:return Nonemid left (right - left) // 2root TreeNode(self.nums[mid])root.left self.help(left, mid - 1)root.right self.help(mid 1, right)return rootdef sortedArrayToBST(self, nums: List[int]) - TreeNode: self.nums numsreturn self.help(0, len(nums) - 1) # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right right class Solution:def help(self, left, right):if left right:return Nonemid left (right - left) // 2root TreeNode(self.nums[mid])root.left self.help(left, mid - 1)root.right self.help(mid 1, right)return rootdef sortedArrayToBST(self, nums: List[int]) - TreeNode: self.nums numsreturn self.help(0, len(nums) - 1)
http://www.pierceye.com/news/22182/

相关文章:

  • 做饮品的网站建设网站的价格是多少钱
  • 设计网站公司湖南岚鸿公司网站建设的步骤以及流程
  • 重庆网站推广计划郑州做网站公司天强科技
  • 门花网站建设网站开发天津网站开发
  • 东莞网站建设总部地址上海中国建设银行网站
  • 网站开发app开发培训wordpress添加下载页
  • 网站建设公司市场开发方案sem分析
  • 南通市住房城乡建设局网站河南省建设监理协会网站人才十
  • h5自助建站系统邢台短视频推广
  • 建站网站赚钱吗付钱做编程题目的网站
  • php做网站基本流程网站总类
  • 网站建设 广wordpress rss 采集
  • js网站计数器代码网站建站的技术解决方案
  • 网站的设计方法有限公司是国企还是私企
  • 哪些网站教做生物实验上海网站备案核验单状态查询
  • 免费行情软网站wordpress会员提成插件
  • 免费信息网站建设大型网站建设一般多少钱
  • 淄博营销网站建设服务微信crm管理系统免费
  • 工作室怎么网站备案做网店有哪些拿货网站
  • 站点推广是什么意思广州市网站优化公司
  • 网站建设gxjzdrj网站meta模板
  • 上海科技网站建设苏州最新通知
  • 男女之间做那个的网站有没有网站是免费做店招图片的
  • 网站怎么做营销策划电子工程网
  • 网站高端建设开发公司王烨个人简历
  • 牛商网网站建设养生网站建设免费
  • 关于购物网站开发的开题报告网站建设报价表模板下载
  • 投资网站建设公司多少钱临平做网站电话
  • 做网站的公司现在还 赚钱吗6网站错误模板
  • 河南做网站那家最好淘宝搜索框去什么网站做