网站优化工作安排,成都网站定制,销售做网站,重庆厂区招工招聘信息查询目录 单源最短路径问题
Dijkstra算法
原理
获得最短路径长度的Dijkstra代码实现
时间复杂度
算法优化
优先队列优化后的代码实现
时间复杂度
可以具体获得最短路径的Dijkstra代码实现
Bellman-Ford算法
原理
代码实现
Floyed算法
原理
代码实现 单源最短路…目录 单源最短路径问题
Dijkstra算法
原理
获得最短路径长度的Dijkstra代码实现
时间复杂度
算法优化
优先队列优化后的代码实现
时间复杂度
可以具体获得最短路径的Dijkstra代码实现
Bellman-Ford算法
原理
代码实现
Floyed算法
原理
代码实现 单源最短路径问题
我们的起始点是固定点从起始点出发到达其他各顶点的最短路径。
Dijkstra算法
此算法不能处理负权边由于大量的应用不依赖负权边所以这个算法有非常广泛的应用。
原理 获得最短路径长度的Dijkstra代码实现
import java.util.Arrays;public class Dijkstra {private WeightedGraph G;private int s;//源点sprivate int[] dis;//整型数组表示源点s到某个顶点的距离private boolean[] visited;//找到还没确定最短距离的顶点public Dijkstra(WeightedGraph G, int s){this.G G;G.validateVertex(s);//验证合法性this.s s;dis new int[G.V()];Arrays.fill(dis, Integer.MAX_VALUE);//赋初值dis[s] 0;//赋初值为0visited new boolean[G.V()];while(true){//循环的第一轮找到的必是源点sint cur -1;//最小的dis值对应的顶点是谁 int curdis Integer.MAX_VALUE;//当前找到的最小的dis值for(int v 0; v G.V(); v )if(!visited[v] dis[v] curdis){curdis dis[v];cur v;}if(cur -1) break;//代表当前所有的顶点都访问过了可以退出咯visited[cur] true;//哪些顶点的dis值已经求出来了for(int w: G.adj(cur))if(!visited[w]){if(dis[cur] G.getWeight(cur, w) dis[w])dis[w] dis[cur] G.getWeight(cur, w);}}}public boolean isConnectedTo(int v){//判断顶点和源点的连通性G.validateVertex(v);return visited[v];}public int distTo(int v){//从源点s到顶点v对应的最短路径的长度G.validateVertex(v);return dis[v];}static public void main(String[] args){WeightedGraph g new WeightedGraph(g.txt);Dijkstra dij new Dijkstra(g, 0);for(int v 0; v g.V(); v )System.out.print(dij.distTo(v) );System.out.println();}
}
时间复杂度 算法优化 我们可以用优先队列获得v这个顶点对应的dis值不再是v这个顶点序号的最小值了。我们的优先队列取出来的是顶点的序号但比较起来是比较的dis值。
优先队列优化后的代码实现
import java.util.Arrays;
import java.util.PriorityQueue;public class Dijkstra {private WeightedGraph G;private int s;private int[] dis;private boolean[] visited;private class Node implements ComparableNode{public int v, dis;public Node(int v, int dis){this.v v;this.dis dis;}Overridepublic int compareTo(Node another){return dis - another.dis;}}public Dijkstra(WeightedGraph G, int s){this.G G;G.validateVertex(s);this.s s;dis new int[G.V()];Arrays.fill(dis, Integer.MAX_VALUE);dis[s] 0;visited new boolean[G.V()];PriorityQueueNode pq new PriorityQueueNode();pq.add(new Node(s, 0));while(!pq.isEmpty()){int cur pq.remove().v;if(visited[cur]) continue;visited[cur] true;for(int w: G.adj(cur))if(!visited[w]){if(dis[cur] G.getWeight(cur, w) dis[w]){dis[w] dis[cur] G.getWeight(cur, w);pq.add(new Node(w, dis[w]));}}}}public boolean isConnectedTo(int v){G.validateVertex(v);return visited[v];}public int distTo(int v){G.validateVertex(v);return dis[v];}static public void main(String[] args){WeightedGraph g new WeightedGraph(g.txt);Dijkstra dij new Dijkstra(g, 0);for(int v 0; v g.V(); v )System.out.print(dij.distTo(v) );System.out.println();}
}
时间复杂度 可以具体获得最短路径的Dijkstra代码实现
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.PriorityQueue;public class Dijkstra {private WeightedGraph G;private int s;private int[] dis;private boolean[] visited;private int[] pre;private class Node implements ComparableNode{public int v, dis;public Node(int v, int dis){this.v v;this.dis dis;}Overridepublic int compareTo(Node another){return dis - another.dis;}}public Dijkstra(WeightedGraph G, int s){this.G G;G.validateVertex(s);this.s s;dis new int[G.V()];Arrays.fill(dis, Integer.MAX_VALUE);pre new int[G.V()];Arrays.fill(pre, -1);dis[s] 0;pre[s] s;visited new boolean[G.V()];PriorityQueueNode pq new PriorityQueueNode();pq.add(new Node(s, 0));while(!pq.isEmpty()){int cur pq.remove().v;if(visited[cur]) continue;visited[cur] true;for(int w: G.adj(cur))if(!visited[w]){if(dis[cur] G.getWeight(cur, w) dis[w]){dis[w] dis[cur] G.getWeight(cur, w);pq.add(new Node(w, dis[w]));pre[w] cur;}}}}public boolean isConnectedTo(int v){G.validateVertex(v);return visited[v];}public int distTo(int v){G.validateVertex(v);return dis[v];}public IterableInteger path(int t){ArrayListInteger res new ArrayList();if(!isConnectedTo(t)) return res;int cur t;while(cur ! s){res.add(cur);cur pre[cur];}res.add(s);Collections.reverse(res);return res;}static public void main(String[] args){WeightedGraph g new WeightedGraph(g.txt);Dijkstra dij new Dijkstra(g, 0);for(int v 0; v g.V(); v )System.out.print(dij.distTo(v) );System.out.println();System.out.println(dij.path(3));}
}
Bellman-Ford算法
原理
松弛操作有方向性相当于拐个弯到达某个端点是不是比直接到达某个端点更近。此算法在有向图无向图也成立。 代码实现
import java.util.Arrays;public class BellmanFord {private WeightedGraph G;private int s;private int[] dis;private boolean hasNegCycle false;public BellmanFord(WeightedGraph G, int s){this.G G;G.validateVertex(s);this.s s;dis new int[G.V()];Arrays.fill(dis, Integer.MAX_VALUE);dis[s] 0;for(int pass 1; pass G.V(); pass ){for(int v 0; v G.V(); v )for(int w: G.adj(v))if(dis[v] ! Integer.MAX_VALUE dis[v] G.getWeight(v, w) dis[w])dis[w] dis[v] G.getWeight(v, w);}for(int v 0; v G.V(); v )for(int w : G.adj(v))if(dis[v] ! Integer.MAX_VALUE dis[v] G.getWeight(v, w) dis[w])hasNegCycle true;}public boolean hasNegativeCycle(){return hasNegCycle;}public boolean isConnectedTo(int v){G.validateVertex(v);return dis[v] ! Integer.MAX_VALUE;}public int distTo(int v){G.validateVertex(v);if(hasNegCycle) throw new RuntimeException(exist negative cycle.);return dis[v];}static public void main(String[] args){WeightedGraph g new WeightedGraph(g.txt);BellmanFord bf new BellmanFord(g, 0);if(!bf.hasNegativeCycle()){for(int v 0; v g.V(); v )System.out.print(bf.distTo(v) );System.out.println();}elseSystem.out.println(exist negative cycle.);WeightedGraph g2 new WeightedGraph(g2.txt);BellmanFord bf2 new BellmanFord(g2, 0);if(!bf2.hasNegativeCycle()){for(int v 0; v g2.V(); v )System.out.print(bf2.distTo(v) );System.out.println();}elseSystem.out.println(exist negative cycle.);}
}
Floyed算法
原理 可以包含负权边也可以包含负权环。 代码实现
import java.util.Arrays;public class Floyed {private WeightedGraph G;private int[][] dis;private boolean hasNegCycle false;public Floyed(WeightedGraph G){this.G G;dis new int[G.V()][G.V()];for(int v 0; v G.V(); v )Arrays.fill(dis[v], Integer.MAX_VALUE);for(int v 0; v G.V(); v ){dis[v][v] 0;for(int w: G.adj(v))dis[v][w] G.getWeight(v, w);}for(int t 0; t G.V(); t )for(int v 0; v G.V(); v )for(int w 0; w G.V(); w )if(dis[v][t] ! Integer.MAX_VALUE dis[t][w] ! Integer.MAX_VALUE dis[v][t] dis[t][w] dis[v][w])dis[v][w] dis[v][t] dis[t][w];for(int v 0; v G.V(); v )if(dis[v][v] 0)hasNegCycle true;}public boolean hasNegativeCycle(){return hasNegCycle;}public boolean isConnectedTo(int v, int w){G.validateVertex(v);G.validateVertex(w);return dis[v][w] ! Integer.MAX_VALUE;}public int distTo(int v, int w){G.validateVertex(v);G.validateVertex(w);return dis[v][w];}static public void main(String[] args){WeightedGraph g new WeightedGraph(g.txt);Floyed floyed new Floyed(g);if(!floyed.hasNegativeCycle()){for(int v 0; v g.V(); v ){for(int w 0; w g.V(); w )System.out.print(floyed.distTo(v, w) );System.out.println();}}elseSystem.out.println(exist negative cycle.);WeightedGraph g2 new WeightedGraph(g2.txt);Floyed floyed2 new Floyed(g2);if(!floyed2.hasNegativeCycle()){for(int v 0; v g.V(); v ){for(int w 0; w g.V(); w )System.out.print(floyed2.distTo(v, w) );System.out.println();}}elseSystem.out.println(exist negative cycle.);}
}