当前位置: 首页 > news >正文

个人网站备案方法上海网页制作与网站设

个人网站备案方法,上海网页制作与网站设,中文在线っと好きだった最新版,中国商标网查询入口前言 去年写过一篇关于使用esp8266(nodemcu)gps模块oled屏幕diy的gps定位器的文章.点击回顾 .无奈OLED屏幕太小了,最近刚好有时间又折腾使用TFT屏幕diy了一款gps码表 效果如图 材料准备 依旧是请出我们的两位老演员 nocdmcu一块. GPS定位模块(我买的大夏龙雀的DX-GP10-GP…前言 去年写过一篇关于使用esp8266(nodemcu)gps模块oled屏幕diy的gps定位器的文章.点击回顾 .无奈OLED屏幕太小了,最近刚好有时间又折腾使用TFT屏幕diy了一款gps码表 效果如图 材料准备 依旧是请出我们的两位老演员 nocdmcu一块. GPS定位模块(我买的大夏龙雀的DX-GP10-GPS模块,某宝有售) 然后是TFT屏幕.尺寸大小为1.8寸.分辨率是128x160.驱动IC为ST7735S 杜邦线母对母若干 接线图 接线说明 TFT屏幕nodemcuGNDGNDVCC3V3SCLD5SDAD7RESD4DCD3CSD8BLK3V 可以不接(控制屏幕背光) GPS模块nodemcuGNDGNDVCC3V3TXDD2RXDD1 代码 #include TFT_eSPI.h // TFT库 #include SoftwareSerial.h // 软件串口库 #include TinyGPS.h // GPS解析库 #include ESP8266WiFi.h // WIFI库// 创建TFT对象 TFT_eSPI tft TFT_eSPI();// gps模块引脚定义 #define RXPin 4 // GPIO 4 对应nodemcu D2 #define TXPin 5 // GPIO 5 对应nodemcu D1 // 创建软件串口对象用于GPS SoftwareSerial gpsSerial(RXPin, TXPin); // RX, TX (根据实际接线调整)// 创建GPS对象 TinyGPSPlus gps;// 卫星信息变量 int usedSatellites 0; // 实际用于定位的卫星数量 uint32_t lastSatelliteUpdate 0;// 变量定义 float currentSpeed 0.0; // 当前速度(km/h) float longitude 0.0; // 经度 float latitude 0.0; // 纬度 String dateStr ----/--/--; // 日期字符串 String timeStr --:--:--; // 时间字符串void setup() {// 初始化串口Serial.begin(115200);//关闭WIFI模块省电WiFi.mode(WIFI_OFF);WiFi.forceSleepBegin();gpsSerial.begin(9600);// 初始化TFT屏幕tft.init();tft.setRotation(1); // 根据屏幕方向调整tft.fillScreen(TFT_BLACK); //填充色Serial.println(GPS Speedometer Initialized); }void loop() {// 读取GPS数据while (gpsSerial.available() 0) {if (gps.encode(gpsSerial.read())) {updateGPSData();}}// 每500ms刷新一次显示static uint32_t lastUpdate 0;if (millis() - lastUpdate 500) {lastUpdate millis();updateDisplay();}// 每2秒更新一次卫星信息不需要太频繁if (millis() - lastSatelliteUpdate 2000) {lastSatelliteUpdate millis();updateSatelliteInfo();updateSatelliteDisplay();}// 如果长时间没有GPS数据重置GPS对象if (millis() 5000 gps.charsProcessed() 10) {Serial.println(No GPS data received: check wiring);while (true);} }// 更新GPS数据 void updateGPSData() {// 经纬度if (gps.location.isValid()) {longitude gps.location.lng();latitude gps.location.lat();}// 时速if (gps.speed.isValid()) {currentSpeed gps.speed.kmph();}if (gps.time.isValid() gps.date.isValid()) {// UTC时间转换为北京时间// 首先将时间增加8小时byte hour gps.time.hour() 8;byte minute gps.time.minute();byte second gps.time.second();byte day gps.date.day();byte month gps.date.month();int year gps.date.year();// 处理小时超过24的情况if (hour 24) {hour - 24;day;// 检查是否需要增加月份if (day daysInMonth(year, month)) {day 1;month;// 检查是否需要增加年份if (month 12) {month 1;year;}}}// 格式化时间字符串char timeBuffer[12];sprintf(timeBuffer, %02d:%02d:%02d,hour,minute,second);timeStr String(timeBuffer);// 格式化日期字符串char dateBuffer[12];sprintf(dateBuffer, %02d/%02d/%02d,year,month,day);dateStr String(dateBuffer);} }// 判断是否为闰年 bool isLeapYear(int year) {if (year % 4 ! 0) return false;if (year % 100 ! 0) return true;return (year % 400 0); }// 获取月份的天数考虑闰年 byte daysInMonth(int year, byte month) {const byte monthDays[] { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };if (month 2 isLeapYear(year)) {return 29;}return monthDays[month - 1]; }// 更新显示 void updateDisplay() {// 显示日期和时间tft.setTextColor(TFT_CYAN, TFT_BLACK);tft.setTextSize(2);// 日期tft.setCursor(20, 5);tft.print(dateStr);// 时间tft.setCursor(20, 25);tft.print(timeStr);// 分隔线tft.drawFastHLine(0, 50, tft.width(), TFT_DARKGREY);// 显示速度tft.setTextColor(TFT_GREEN, TFT_BLACK);tft.setTextSize(3);tft.setCursor(5, 55);if (currentSpeed 100 currentSpeed 10) {tft.print( );}if (currentSpeed 10) {tft.print( );}tft.print(currentSpeed, 1);tft.setTextSize(2);tft.print( km/h);// 分隔线tft.drawFastHLine(0, 85, tft.width(), TFT_DARKGREY);// 显示经纬度tft.setTextColor(TFT_YELLOW, TFT_BLACK);tft.setTextSize(1);tft.setCursor(20, 95);tft.print(Lng:);tft.print(longitude, 6);tft.setCursor(20, 115);tft.print(Lat:);tft.print(latitude, 6); }void updateSatelliteInfo() {// 获取用于定位的卫星数量if (gps.satellites.isValid()) {usedSatellites gps.satellites.value();} else {usedSatellites 0; // 无有效数据时显示0} }void updateSatelliteDisplay() {// 清空原有显示区域tft.fillRect(120, 95, tft.width(), 20, TFT_BLACK);// 显示卫星信息tft.setTextColor(TFT_CYAN, TFT_BLACK);tft.setTextSize(1);// 卫星图标tft.drawChar(120, 95, 0x47, TFT_CYAN, TFT_BLACK, 1); // 卫星符号// 使用卫星数量tft.setCursor(125, 95);tft.print( );tft.print(usedSatellites);// 根据卫星数量显示状态tft.setCursor(120, 115);if (usedSatellites 0) {tft.setTextColor(TFT_RED, TFT_BLACK);tft.print(No Fix);} else if (usedSatellites 4) {tft.setTextColor(TFT_YELLOW, TFT_BLACK);tft.print(Weak);} else {tft.setTextColor(TFT_GREEN, TFT_BLACK);tft.print(Good);} } 补充说明 nodemcu驱动tft屏幕引入了’TFT_eSPI’库负责驱动屏幕.其中User_Setup.h文件需要按需修改引脚定义. 我贴一下我这边的配置 // USER DEFINED SETTINGS // Set driver type, fonts to be loaded, pins used and SPI control method etc. // // See the User_Setup_Select.h file if you wish to be able to define multiple // setups and then easily select which setup file is used by the compiler. // // If this file is edited correctly then all the library example sketches should // run without the need to make any more changes for a particular hardware setup! // Note that some sketches are designed for a particular TFT pixel width/height// User defined information reported by Read_User_Setup test diagnostics example #define USER_SETUP_INFO User_Setup// Define to disable all #warnings in library (can be put in User_Setup_Select.h) //#define DISABLE_ALL_LIBRARY_WARNINGS// ################################################################################## // // Section 1. Call up the right driver file and any options for it // // ##################################################################################// Define STM32 to invoke optimised processor support (only for STM32) //#define STM32// Defining the STM32 board allows the library to optimise the performance // for UNO compatible MCUfriend style shields //#define NUCLEO_64_TFT //#define NUCLEO_144_TFT// STM32 8-bit parallel only: // If STN32 Port A or B pins 0-7 are used for 8-bit parallel data bus bits 0-7 // then this will improve rendering performance by a factor of ~8x //#define STM_PORTA_DATA_BUS //#define STM_PORTB_DATA_BUS// Tell the library to use parallel mode (otherwise SPI is assumed) //#define TFT_PARALLEL_8_BIT //#defined TFT_PARALLEL_16_BIT // **** 16-bit parallel ONLY for RP2040 processor ****// Display type - only define if RPi display //#define RPI_DISPLAY_TYPE // 20MHz maximum SPI// Only define one driver, the other ones must be commented out // #define ILI9341_DRIVER // Generic driver for common displays //#define ILI9341_2_DRIVER // Alternative ILI9341 driver, see https://github.com/Bodmer/TFT_eSPI/issues/1172 #define ST7735_DRIVER // Define additional parameters below for this display //#define ILI9163_DRIVER // Define additional parameters below for this display //#define S6D02A1_DRIVER //#define RPI_ILI9486_DRIVER // 20MHz maximum SPI //#define HX8357D_DRIVER //#define ILI9481_DRIVER //#define ILI9486_DRIVER //#define ILI9488_DRIVER // WARNING: Do not connect ILI9488 display SDO to MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is high) //#define ST7789_DRIVER // Full configuration option, define additional parameters below for this display //#define ST7789_2_DRIVER // Minimal configuration option, define additional parameters below for this display //#define R61581_DRIVER //#define RM68140_DRIVER //#define ST7796_DRIVER //#define SSD1351_DRIVER //#define SSD1963_480_DRIVER //#define SSD1963_800_DRIVER //#define SSD1963_800ALT_DRIVER //#define ILI9225_DRIVER //#define GC9A01_DRIVER// Some displays support SPI reads via the MISO pin, other displays have a single // bi-directional SDA pin and the library will try to read this via the MOSI line. // To use the SDA line for reading data from the TFT uncomment the following line:// #define TFT_SDA_READ // This option is for ESP32 ONLY, tested with ST7789 and GC9A01 display only// For ST7735, ST7789 and ILI9341 ONLY, define the colour order IF the blue and red are swapped on your display // Try ONE option at a time to find the correct colour order for your display#define TFT_RGB_ORDER TFT_RGB // Colour order Red-Green-Blue // #define TFT_RGB_ORDER TFT_BGR // Colour order Blue-Green-Red// For M5Stack ESP32 module with integrated ILI9341 display ONLY, remove // in line below// #define M5STACK// For ST7789, ST7735, ILI9163 and GC9A01 ONLY, define the pixel width and height in portrait orientation // #define TFT_WIDTH 80#define TFT_WIDTH 128 // #define TFT_WIDTH 172 // ST7789 172 x 320 // #define TFT_WIDTH 170 // ST7789 170 x 320 // #define TFT_WIDTH 240 // ST7789 240 x 240 and 240 x 320#define TFT_HEIGHT 160 // #define TFT_HEIGHT 128 // #define TFT_HEIGHT 240 // ST7789 240 x 240 // #define TFT_HEIGHT 320 // ST7789 240 x 320 // #define TFT_HEIGHT 240 // GC9A01 240 x 240// For ST7735 ONLY, define the type of display, originally this was based on the // colour of the tab on the screen protector film but this is not always true, so try // out the different options below if the screen does not display graphics correctly, // e.g. colours wrong, mirror images, or stray pixels at the edges. // Comment out ALL BUT ONE of these options for a ST7735 display driver, save this // this User_Setup file, then rebuild and upload the sketch to the board again:// #define ST7735_INITB // #define ST7735_GREENTAB // #define ST7735_GREENTAB2 // #define ST7735_GREENTAB3 // #define ST7735_GREENTAB128 // For 128 x 128 display // #define ST7735_GREENTAB160x80 // For 160 x 80 display (BGR, inverted, 26 offset) // #define ST7735_ROBOTLCD // For some RobotLCD Arduino shields (128x160, BGR, https://docs.arduino.cc/retired/getting-started-guides/TFT) // #define ST7735_REDTAB // #define ST7735_BLACKTAB // #define ST7735_REDTAB160x80 // For 160 x 80 display with 24 pixel offset// If colours are inverted (white shows as black) then uncomment one of the next // 2 lines try both options, one of the options should correct the inversion.// #define TFT_INVERSION_ON // #define TFT_INVERSION_OFF// ################################################################################## // // Section 2. Define the pins that are used to interface with the display here // // ##################################################################################// If a backlight control signal is available then define the TFT_BL pin in Section 2 // below. The backlight will be turned ON when tft.begin() is called, but the library // needs to know if the LEDs are ON with the pin HIGH or LOW. If the LEDs are to be // driven with a PWM signal or turned OFF/ON then this must be handled by the user // sketch. e.g. with digitalWrite(TFT_BL, LOW);// #define TFT_BL 32 // LED back-light control pin // #define TFT_BACKLIGHT_ON HIGH // Level to turn ON back-light (HIGH or LOW)// We must use hardware SPI, a minimum of 3 GPIO pins is needed. // Typical setup for ESP8266 NodeMCU ESP-12 is : // // Display SDO/MISO to NodeMCU pin D6 (or leave disconnected if not reading TFT) // Display LED to NodeMCU pin VIN (or 5V, see below) // Display SCK to NodeMCU pin D5 // Display SDI/MOSI to NodeMCU pin D7 // Display DC (RS/AO)to NodeMCU pin D3 // Display RESET to NodeMCU pin D4 (or RST, see below) // Display CS to NodeMCU pin D8 (or GND, see below) // Display GND to NodeMCU pin GND (0V) // Display VCC to NodeMCU 5V or 3.3V // // The TFT RESET pin can be connected to the NodeMCU RST pin or 3.3V to free up a control pin // // The DC (Data Command) pin may be labelled AO or RS (Register Select) // // With some displays such as the ILI9341 the TFT CS pin can be connected to GND if no more // SPI devices (e.g. an SD Card) are connected, in this case comment out the #define TFT_CS // line below so it is NOT defined. Other displays such at the ST7735 require the TFT CS pin // to be toggled during setup, so in these cases the TFT_CS line must be defined and connected. // // The NodeMCU D0 pin can be used for RST // // // Note: only some versions of the NodeMCU provide the USB 5V on the VIN pin // If 5V is not available at a pin you can use 3.3V but backlight brightness // will be lower.// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP8266 SETUP ######// For NodeMCU - use pin numbers in the form PIN_Dx where Dx is the NodeMCU pin designation #define TFT_MISO PIN_D6 // Automatically assigned with ESP8266 if not defined #define TFT_MOSI PIN_D7 // Automatically assigned with ESP8266 if not defined #define TFT_SCLK PIN_D5 // Automatically assigned with ESP8266 if not defined#define TFT_CS PIN_D8 // Chip select control pin D8 #define TFT_DC PIN_D3 // Data Command control pin #define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next line) //#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V//#define TFT_BL PIN_D1 // LED back-light (only for ST7789 with backlight control pin)//#define TOUCH_CS PIN_D2 // Chip select pin (T_CS) of touch screen//#define TFT_WR PIN_D2 // Write strobe for modified Raspberry Pi TFT only// ###### FOR ESP8266 OVERLAP MODE EDIT THE PIN NUMBERS IN THE FOLLOWING LINES ######// Overlap mode shares the ESP8266 FLASH SPI bus with the TFT so has a performance impact // but saves pins for other functions. It is best not to connect MISO as some displays // do not tristate that line when chip select is high! // Note: Only one SPI device can share the FLASH SPI lines, so a SPI touch controller // cannot be connected as well to the same SPI signals. // On NodeMCU 1.0 SD0MISO, SD1MOSI, CLKSCLK to connect to TFT in overlap mode // On NodeMCU V3 S0 MISO, S1 MOSI, S2 SCLK // In ESP8266 overlap mode the following must be defined//#define TFT_SPI_OVERLAP// In ESP8266 overlap mode the TFT chip select MUST connect to pin D3 //#define TFT_CS PIN_D3 //#define TFT_DC PIN_D5 // Data Command control pin //#define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next line) //#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP32 SETUP ######// For ESP32 Dev board (only tested with ILI9341 display) // The hardware SPI can be mapped to any pins//#define TFT_MISO 19 //#define TFT_MOSI 23 //#define TFT_SCLK 18 //#define TFT_CS 15 // Chip select control pin //#define TFT_DC 2 // Data Command control pin //#define TFT_RST 4 // Reset pin (could connect to RST pin) //#define TFT_RST -1 // Set TFT_RST to -1 if display RESET is connected to ESP32 board RST// For ESP32 Dev board (only tested with GC9A01 display) // The hardware SPI can be mapped to any pins//#define TFT_MOSI 15 // In some display driver board, it might be written as SDA and so on. //#define TFT_SCLK 14 //#define TFT_CS 5 // Chip select control pin //#define TFT_DC 27 // Data Command control pin //#define TFT_RST 33 // Reset pin (could connect to Arduino RESET pin) //#define TFT_BL 22 // LED back-light//#define TOUCH_CS 21 // Chip select pin (T_CS) of touch screen//#define TFT_WR 22 // Write strobe for modified Raspberry Pi TFT only// For the M5Stack module use these #define lines //#define TFT_MISO 19 //#define TFT_MOSI 23 //#define TFT_SCLK 18 //#define TFT_CS 14 // Chip select control pin //#define TFT_DC 27 // Data Command control pin //#define TFT_RST 33 // Reset pin (could connect to Arduino RESET pin) //#define TFT_BL 32 // LED back-light (required for M5Stack)// ###### EDIT THE PINs BELOW TO SUIT YOUR ESP32 PARALLEL TFT SETUP ######// The library supports 8-bit parallel TFTs with the ESP32, the pin // selection below is compatible with ESP32 boards in UNO format. // Wemos D32 boards need to be modified, see diagram in Tools folder. // Only ILI9481 and ILI9341 based displays have been tested!// Parallel bus is only supported for the STM32 and ESP32 // Example below is for ESP32 Parallel interface with UNO displays// Tell the library to use 8-bit parallel mode (otherwise SPI is assumed) //#define TFT_PARALLEL_8_BIT// The ESP32 and TFT the pins used for testing are: //#define TFT_CS 33 // Chip select control pin (library pulls permanently low //#define TFT_DC 15 // Data Command control pin - must use a pin in the range 0-31 //#define TFT_RST 32 // Reset pin, toggles on startup//#define TFT_WR 4 // Write strobe control pin - must use a pin in the range 0-31 //#define TFT_RD 2 // Read strobe control pin//#define TFT_D0 12 // Must use pins in the range 0-31 for the data bus //#define TFT_D1 13 // so a single register write sets/clears all bits. //#define TFT_D2 26 // Pins can be randomly assigned, this does not affect //#define TFT_D3 25 // TFT screen update performance. //#define TFT_D4 17 //#define TFT_D5 16 //#define TFT_D6 27 //#define TFT_D7 14// ###### EDIT THE PINs BELOW TO SUIT YOUR STM32 SPI TFT SETUP ######// The TFT can be connected to SPI port 1 or 2 //#define TFT_SPI_PORT 1 // SPI port 1 maximum clock rate is 55MHz //#define TFT_MOSI PA7 //#define TFT_MISO PA6 //#define TFT_SCLK PA5//#define TFT_SPI_PORT 2 // SPI port 2 maximum clock rate is 27MHz //#define TFT_MOSI PB15 //#define TFT_MISO PB14 //#define TFT_SCLK PB13// Can use Ardiuno pin references, arbitrary allocation, TFT_eSPI controls chip select //#define TFT_CS D5 // Chip select control pin to TFT CS //#define TFT_DC D6 // Data Command control pin to TFT DC (may be labelled RS Register Select) //#define TFT_RST D7 // Reset pin to TFT RST (or RESET) // OR alternatively, we can use STM32 port reference names PXnn //#define TFT_CS PE11 // Nucleo-F767ZI equivalent of D5 //#define TFT_DC PE9 // Nucleo-F767ZI equivalent of D6 //#define TFT_RST PF13 // Nucleo-F767ZI equivalent of D7//#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to processor reset// Use an Arduino pin for initial testing as connecting to processor reset// may not work (pulse too short at power up?)// ################################################################################## // // Section 3. Define the fonts that are to be used here // // ##################################################################################// Comment out the #defines below with // to stop that font being loaded // The ESP8366 and ESP32 have plenty of memory so commenting out fonts is not // normally necessary. If all fonts are loaded the extra FLASH space required is // about 17Kbytes. To save FLASH space only enable the fonts you need!#define LOAD_GLCD // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in FLASH #define LOAD_FONT2 // Font 2. Small 16 pixel high font, needs ~3534 bytes in FLASH, 96 characters #define LOAD_FONT4 // Font 4. Medium 26 pixel high font, needs ~5848 bytes in FLASH, 96 characters #define LOAD_FONT6 // Font 6. Large 48 pixel font, needs ~2666 bytes in FLASH, only characters 1234567890:-.apm #define LOAD_FONT7 // Font 7. 7 segment 48 pixel font, needs ~2438 bytes in FLASH, only characters 1234567890:-. #define LOAD_FONT8 // Font 8. Large 75 pixel font needs ~3256 bytes in FLASH, only characters 1234567890:-. //#define LOAD_FONT8N // Font 8. Alternative to Font 8 above, slightly narrower, so 3 digits fit a 160 pixel TFT #define LOAD_GFXFF // FreeFonts. Include access to the 48 Adafruit_GFX free fonts FF1 to FF48 and custom fonts// Comment out the #define below to stop the SPIFFS filing system and smooth font code being loaded // this will save ~20kbytes of FLASH #define SMOOTH_FONT// ################################################################################## // // Section 4. Other options // // ##################################################################################// For RP2040 processor and SPI displays, uncomment the following line to use the PIO interface. //#define RP2040_PIO_SPI // Leave commented out to use standard RP2040 SPI port interface// For RP2040 processor and 8 or 16-bit parallel displays: // The parallel interface write cycle period is derived from a division of the CPU clock // speed so scales with the processor clock. This means that the divider ratio may need // to be increased when overclocking. It may also need to be adjusted dependant on the // display controller type (ILI94341, HX8357C etc.). If RP2040_PIO_CLK_DIV is not defined // the library will set default values which may not suit your display. // The display controller data sheet will specify the minimum write cycle period. The // controllers often work reliably for shorter periods, however if the period is too short // the display may not initialise or graphics will become corrupted. // PIO write cycle frequency (CPU clock/(4 * RP2040_PIO_CLK_DIV)) //#define RP2040_PIO_CLK_DIV 1 // 32ns write cycle at 125MHz CPU clock //#define RP2040_PIO_CLK_DIV 2 // 64ns write cycle at 125MHz CPU clock //#define RP2040_PIO_CLK_DIV 3 // 96ns write cycle at 125MHz CPU clock// For the RP2040 processor define the SPI port channel used (default 0 if undefined) //#define TFT_SPI_PORT 1 // Set to 0 if SPI0 pins are used, or 1 if spi1 pins used// For the STM32 processor define the SPI port channel used (default 1 if undefined) //#define TFT_SPI_PORT 2 // Set to 1 for SPI port 1, or 2 for SPI port 2// Define the SPI clock frequency, this affects the graphics rendering speed. Too // fast and the TFT driver will not keep up and display corruption appears. // With an ILI9341 display 40MHz works OK, 80MHz sometimes fails // With a ST7735 display more than 27MHz may not work (spurious pixels and lines) // With an ILI9163 display 27 MHz works OK.// #define SPI_FREQUENCY 1000000 // #define SPI_FREQUENCY 5000000 // #define SPI_FREQUENCY 10000000 // #define SPI_FREQUENCY 20000000 #define SPI_FREQUENCY 27000000 // #define SPI_FREQUENCY 40000000 // #define SPI_FREQUENCY 55000000 // STM32 SPI1 only (SPI2 maximum is 27MHz) // #define SPI_FREQUENCY 80000000// Optional reduced SPI frequency for reading TFT #define SPI_READ_FREQUENCY 20000000// The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here: #define SPI_TOUCH_FREQUENCY 2500000// The ESP32 has 2 free SPI ports i.e. VSPI and HSPI, the VSPI is the default. // If the VSPI port is in use and pins are not accessible (e.g. TTGO T-Beam) // then uncomment the following line: //#define USE_HSPI_PORT// Comment out the following #define if SPI Transactions do not need to be // supported. When commented out the code size will be smaller and sketches will // run slightly faster, so leave it commented out unless you need it!// Transaction support is needed to work with SD library but not needed with TFT_SdFat // Transaction support is required if other SPI devices are connected.// Transactions are automatically enabled by the library for an ESP32 (to use HAL mutex) // so changing it here has no effect// #define SUPPORT_TRANSACTIONS 完整代码可以看我的码云地址:https://gitee.com/hailongg/esp8266-demo
http://www.pierceye.com/news/7369/

相关文章:

  • 一级a做片性视频网站app案例网站
  • 济宁网站制作公司寿光网站建设报价
  • 兰州企业网站建设网站如何做内链
  • 手机网站页面制作南阳网站排名优化价格
  • 网站seo视频狼雨seo教程1688淘宝货源一件代发
  • 中国做机床的公司网站旗县长安网站建设思路
  • 接单做网站深圳网站建设php
  • 网站的栏目管理wordpress插件的开发
  • 如何创建自己的个人网站电影网站的代理怎么做
  • 有没有一些帮做名片的网站网站开发人员定罪案例
  • 做酒店网站设计网站建设审核
  • 正能量不良网站推荐2020网站编辑如何做
  • 手机网站怎么改成电脑版网站整站优化公司
  • 旅游论坛网站建设合作公司做网站
  • 天津科技公司网站广州竞价托管代运营
  • 域名注册网站查询工具杭州企业建站程序
  • 网站毕业设计代做工业园网站建设
  • 郑州网站优化的微博_腾讯微博怎么用dw网站怎么建设
  • 孵化器网站建设方案平台经济是什么意思
  • 如何创建一个属于自己的网站推广软文营销案例
  • 做外贸怎么网站找客户通化北京网站建设
  • 做系统和做网站哪个简单一些免费站推广网站2022
  • 私募基金公司网站建设大发 wordpress ifanr
  • 高唐建筑公司网站苏州软件开发
  • 网站建设项目简介培训网站完整页面
  • 万博法务网站怎么优化整站
  • 网站建设是不是要有营业执照宿迁做网站需要多少钱
  • 2018建设网站成立中英文网站建设工作领导小组
  • 外贸网站建设公司价格江苏镇江论坛
  • 做网站买虚拟服务器南京网站如何制作