公司网站设计与实现,做网站系统学校,海南省住房和城乡建设厅官网网站首页,做二维码推送网站常见手撕项目C 设计模式单例模式饿汉模式懒汉模式 设计模式
单例模式 单例模式是一种常用的软件设计模式#xff0c;其目的是确保一个类只有一个实例#xff0c;并提供一个全局访问点来获取该实例。
优点#xff1a; 资源控制#xff1a;单例模式能够确保一个类只有一个实… 常见手撕项目C 设计模式单例模式饿汉模式懒汉模式 设计模式
单例模式 单例模式是一种常用的软件设计模式其目的是确保一个类只有一个实例并提供一个全局访问点来获取该实例。
优点 资源控制单例模式能够确保一个类只有一个实例存在这对于控制资源的使用非常有用如配置文件的读取、数据库的连接等可以避免由于多个实例造成的资源浪费或冲突。全局访问点单例对象可以被全局访问方便其他对象对其进行访问而无需持有单例类的引用。数据共享由于整个应用程序共享一个单例实例它自然地提供了一个共享数据的环境这在某些场合下是非常有用的。 缺点 全局变量同步问题单例模式本质上提供了一个全局可访问的实例但全局变量或对象容易被误用特别是涉及多个线程进行访问的时候还会出现同步问题。违背单一职责原则单例类除了管理自己的实例外还承担了业务逻辑的职责违反了单一职责原则。
介绍完单例模式我们来看看单例模式的两种实现方式分别是饿汉模式与懒汉模式。
饿汉模式 饿汉模式指的是单例实例在程序启动时就立即创建迫不及待的感觉。这种方式避免了线程安全问题但可能会增加程序的启动时间同时如果实例最终未被使用则会造成资源的浪费。
class EagerSingleton{
private:// 将自己的实例化对象申明为静态资源static EagerSingleton instance;
protected:// 隐藏自己的构造函数以及析构函数防止用户调用EagerSingleton() default; // 这里构造函数设置为默认EagerSingleton(const EagerSingleton) default;EagerSingleton operator (const EagerSingleton) default;~EagerSingleton() default;
public:EagerSingleton getInstance(){return instance;}
}// 静态的私有成员变量可以在类外进行初始化(一般在main()函数之前进行初始化)在这里你可以理解instance是类内成员可以访问私有以及保护成员。
EagerSingleton EagerSingleton::instance();懒汉模式 懒汉模式指的是单例实例在第一次被使用时才进行创建不叫我那我就懒不创建。这种方式可以减少资源的消耗但需要考虑线程安全问题例如多个线程同时是第一次使用所以一般需要锁。
#include mutexclass lazySingleton{
private:static lazySingleton* instance; // 懒汉模式一般使用指针static mutex my_mu; // 考虑到线程安全需要有锁。
protected:// 不给用户调用构造函数和析构函数的机会lazySingleton() default;lazySingleton(const lazySingleton) default;lazySingleton operator(const laySingleton) default;~lazySingleton() default;
public:lazySingleton* getInstance(){if(instance nullptr){ // 第一次检查std::lock_guardstd::mutex lock(my_mu); //作用域锁离开作用域后自动解锁if(instance nullptr){ // 第二次检查instance new lazySingleton();}}return *this;}// my_mu会在这里结束后自动解锁
}// 静态成员变量类外初始化
lazySingleton lazySingleton::instance nullptr;
lazySingleton lazySingleton::my_mu; // 调用锁的自动初始化方法这里可能会好奇为什么需要两次判断instance nullptr
第一次检查 (instance nullptr) 第一次检查是在锁外进行的。这个检查的目的是避免在单例实例已经创建之后的每次调用都需要进行昂贵的锁操作。如果实例已经存在就直接返回实例这样大部分时间可以避免锁的开销。获取锁 如果第一次检查发现实例为nullptr即单例尚未被创建那么就需要进入同步块通过获取锁来确保只有一个线程可以创建单例实例。这是必要的因为可能有多个线程同时通过了第一次的nullptr检查。第二次检查 (instance nullptr) 即使线程成功获取了锁仍然需要再次检查实例是否为nullptr。这是因为在当前线程等待锁的同时可能有另一个线程已经获取了锁、创建了实例并释放了锁。第二次检查确保了即使在多个线程同时尝试创建单例实例的情况下单例实例仍然是唯一的。